Evaluación de una plataforma de SDR para la implementación de GPR usando radar definido por software

Autores/as

  • Andrés Mauricio Igirio Vargas Universidad Militar Nueva Granada
  • Juan Carlos Martínez Universidad Militar Nueva Granada

DOI:

https://doi.org/10.24054/rcta.v1i37.1259

Palabras clave:

SDR, GPR, PicoSDR, calibración

Resumen

La tecnología de radio definido por software (Software Defined Radio - SDR), ha puesto al alcance de investigadores y académicos el insumo necesario para desarrollar y probar tecnologías en comunicaciones inalámbricas nuevas o en uso. Uno de los campos en los que recientemente se ha venido usando SDR es en el desarrollo y aplicación de diferentes técnicas de radar. El radar de penetración de suelos o Ground Penetrating Radar (GPR), tiene diversas aplicaciones en la detección de gran variedad de materiales u objetos que se encuentran bajo tierra. El uso de esta herramienta se destaca en campos como la minería, arqueología, glaciología, aplicaciones militares y últimamente ha cobrado gran importancia al tener gran potencial para el desarrollo de detectores de minas antipersona de bajo costo. El presente artículo evalúa el potencial de la plataforma Nutaq Pico SDR 2x2 para su posible uso en un GPR, analizando su comportamiento en cuanto a respuesta en frecuencia y otras características técnicas. Se evaluaron la versatilidad de la plataforma en cuanto a la configuración de parámetros como cambio de frecuencia y ganancia. Dicha evaluación se realizó aplicando dos tipos distintos de barridos, uno donde se varió solamente la frecuencia y otro donde se variaron las ganancias y la frecuencia. Como resultado de estas dos pruebas se evidenció la factibilidad de calibración del equipo para realizar futuras pruebas en un ancho amplio de frecuencias.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

El Alaoui Ismaili, Zakaria, Wessam Ajib, Omar A. Yeste-Ojeda, and René Landry. 2015. “Implementation of Adaptive Modulation for A/G Communication System Using ZeptoSDR.” AIAA/IEEE Digital Avionics Systems Conference - Proceedings 2C5-1-2C5-10.

Anon. 2017. “SOFTWARE DEFINED RADIO FOR STEPPED-FREQUENCY , GROUND-PENETRATING RADAR Samuel C . Carey and Waymond R . Scott , Jr . Georgia Institute of Technology School of Electrical and Computer Engineering 777 Atlantic Drive NW , Atlanta , GA 30332-0250.” 4825–28.

Ati, Adel, Faouzi Bellili, Haithem Haggui, Abdelaziz Samet, and Sofiène Affes. 2015. “Implementation of a Maximum Likelihood Doppler Spread Estimator on a Model-Based Design Platform.” 2015 IEEE International Conference on Ubiquitous Wireless Broadband, ICUWB 2015.

Devia, C., J. Martinez-Moritz, C. Parra, J. Colorado, L. Neira, I. Mondragon, M. Perez, and D. Mendez. 2017. “An Integrated Aerial System for Landmine Detection: SDR-Based Ground Penetrating Radar Onboard an Autonomous Drone.” Advanced Robotics 31(15):791–808.

Jalloul, Taher, Wessam Ajib, Omar A. Yeste-Ojeda, Rene Landry, and Claude Thibeault. 2014. “DME/DME Navigation Using a Single Low-Cost SDR and Sequential Operation.” AIAA/IEEE Digital Avionics Systems Conference - Proceedings 3C21–29.

Jenks, C. H. J. and S. R. Pennock. 2017. “The Use of a Software Defined Radio as an OFDM GPR.” 2017 9th International Workshop on Advanced Ground Penetrating Radar, IWAGPR 2017 - Proceedings 1–4.

MacAsero, Jesrey Martin S., Olga Joy L. Gerasta, Daryl P. Pongcol, Vrian Jay V. Ylaya, and Aileen B. Caberos. 2019. “Underground Target Objects Detection Simulation Using FMCW Radar with SDR Platform.” 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018 1–7.

Nguyen, Danh H., Mikko Rauhanummi, Harri Saarnisaari, Nagarajan Kandasamy, and Kapil R. Dandekar. 2016. “Leveraging an Agile RF Transceiver for Rapid Prototyping of Small-Cell Systems.” 2015 IEEE 82nd Vehicular Technology Conference, VTC Fall 2015 - Proceedings 1–5.

Nicolaescu, Ioan, Piet Van Genderen, K. W. Van Dongen, Joost Van Heijenoort, and Paul Hakkaart. 2003. “May, 2003,.” 14–16.

Noon, David. 1996. “Stepped-Frequency Radar Design and Signal Processing Enhances Ground Penetrating Radar.” Department of Electricla and Computer Engineer PhD(January).

Parra, Carla, Edison Tatayo, Alejandro Paccha, Christian Tipantuna, and Jorge Carvajal. 2019. “SDR-Based Portable Open-Source GSM/GPRS Network for Emergency Scenarios.” 2019 Sixth International Conference on EDemocracy & EGovernment (ICEDEG) 268–73.

Pongcol, Daryl P., Olga Joy L. Gerasta, Jesrey Martin S. MacAsero, Vrian Jay V. Ylaya, and Aileen B. Caberos. 2019. “GNU-Radio Simulation Application for Impulse Radar Technique on Ground Object Detection.” 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018 1–6.

Prager, Samuel, Tushar Thrivikraman, Mark Haynes, John Stang, David Hawkins, and Mahta Moghaddam. 2018. “Ultra-Wideband Synthesis for High-Range Resolution Software Defined Radar.” 2018 IEEE Radar Conference, RadarConf 2018 (ii):1089–94.

Ralston, J. and C. Hargrave. 2012. “Software Defined Radar: An Open Source Platform for Prototype GPR Development.” 172–77.

Salam, Abdul, Mehmet C. Vuran, and Suat Irmak. 2019. “Di-Sense: In Situ Real-Time Permittivity Estimation and Soil Moisture Sensing Using Wireless Underground Communications.” Computer Networks 151:31–41.

Watson, Susan and Jean Benoit Larouche. 2017. “Design of a Software Defined Radio-Based Tactical DSA Network.” Proceedings - IEEE Military Communications Conference MILCOM 2017-Octob:738–43.

Descargas

Publicado

2021-03-10 — Actualizado el 2021-03-10

Cómo citar

[1]
A. M. Igirio Vargas y J. C. Martínez, «Evaluación de una plataforma de SDR para la implementación de GPR usando radar definido por software», RCTA, vol. 1, n.º 37, pp. 99–107, mar. 2021.

Número

Sección

Artículos