Evaluation of the accuracy of a digital terrain model (TDM) in photogrammetric measurements with unmanned aerial vehicles (UAV) and conventional surveying equipment
DOI:
https://doi.org/10.24054/raaas.v14i2.2786Keywords:
Photogrammetry, UAV, DTM, Cloud Compare, SurveyingAbstract
Digital Terrain Models (DTM) are widely used in engineering, constituting the basis for deriving cartography that can be used in various hydrological studies, such as flood studies, and for generating contour lines and calculating earthworks, among others. Unmanned Aerial Vehicles (UAV) can provide these products with better spatial and temporal resolution than other sensors, such as satellites. The quality of the DTMs developed with UAVs depends on the flight programming, the precision in measuring the Check Points (ChPs) and Ground Control Points (GCP) measurement, and the post-processing of the data and point filtering. This research analyzes the accuracy of the DTM's using the Agisoft Metashape photogrammetric software (private software), and the Cloud compare photogrammetric viewer (free); the GPCs were left on the edges of the study area to georeferenced the model and evaluate the quality of the generated product. The control points were measured with a dual-frequency Topcon Hyper GPS in RTK mode with an accuracy of 1.5 cm. Comparing the results with conventional topography, photogrammetric products with XYZ precision of 2 cm were obtained using a total station. These results indicate excellent precision, allowing its application in various studies and with less fieldwork than traditional methods.
Downloads
References
Acevo Herrera, R. (2011). Sistemas de teledetección activos y pasivos embarcados en sistemas aéreos no tripulados para la monitorización de la tierra [Tesis doctoral, Universitat Politècnica de Catalunya]. Universitat Politècnica de Catalunya.
Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement: Journal of the International Measurement Confederation, 98, 221–227. https://doi.org/10.1016/j.measurement.2016.12.002
Arévalo-Verjel, A. N., Lerma, J. L., & Fernández, J. (2021). Análisis comparativo de software para obtener MDT con fotogrametría RPAS. 3rd Congress in Geomatics Engineering, 3, 7. https://doi.org/10.4995/CiGeo2021.2021.12764
Arévalo-Verjel, A. N., Lerma, J. L., Prieto, J. F., Carbonell-Rivera, J. P., & Fernández, J. (2022). Estimation of the block adjustment error in UAV photogrammetric flights in flat areas. Remote Sensing, 14(12), 2877. https://doi.org/10.3390/rs14122877
Carrillo, O. S., Castellanos, C., & Céspedes, N. (2022). Alternativas biológicas para el manejo de enfermedades fúngicas radiculares y producción más limpia de la fresa. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(1). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2721/3794
Chang, K. J., Tseng, C. W., Tseng, C. M., Liao, T. C., & Yang, C. J. (2020). Application of unmanned aerial vehicle (UAV)-acquired topography for quantifying typhoon-driven landslide volume and its potential topographic impact on rivers in mountainous catchments. Applied Sciences, 10(17), 6102. https://doi.org/10.3390/app10176102
Chen, Q., Wang, H., Zhang, H., Sun, M., Liu, X., Gloaguen, R., & Thenkabail, P. S. (2016). A point cloud filtering approach to generating DTMs for steep mountainous areas and adjacent residential areas. Remote Sensing, 8(1), 71. https://doi.org/10.3390/rs8010071
Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
Crespo-Peremarch, P., Torralba, J., Carbonell-Rivera, J. P., & Ruiz, L. A. (2020). Comparing the generation of DTM in a forest ecosystem using TLS, ALS and UAV-DAP, and different software tools. ISPRS Archives, XLIII-B3, 575–582. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-575-2020
Fragozo Brito, A. F., & Sanes Orrego, A. (2022). El ciclo de vida de los residuos sólidos domiciliarios como perspectiva de cultura ciudadana sostenible para el distrito de Riohacha, La Guajira. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(1). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2715/3787
FGDC. (1998). Geospatial positioning accuracy standards part 3: National standard for spatial data accuracy. Federal Geographic Data Committee.
González, D. J., González, O. J., Manco, J. D., Rojas, M. E., & Lascarro, N. F. (2022). Determinación del uso industrial de las calizas de la formación Lagunitas, aflorantes al este del municipio de Agustín Codazzi, Cesar-Colombia. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(1). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2722/3795
Hernández López, D. (2006). Introducción a la fotogrametría digital. ETSI Agrónomos: Universidad de Castilla-La Mancha.
IGAC. (2018). Resolución IGAC 643-18: Adopta especificaciones técnicas levantamientos planimétricos y topográficos. Instituto Geográfico Agustín Codazzi.
Instituto Geográfico Agustín Codazzi. (2020). Resolución 471 (p. 32).
Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. D. J., & Enciso, J. (2021). Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy. ISPRS International Journal of Geo-Information, 10(5), 285. https://doi.org/10.3390/ijgi10050285
Lerma, J. L. G. (2002). Fotogrametría moderna: Analítica y digital (1ª ed., p. 560). Universitat Politècnica de València.
Li, Z., Xu, X., Ren, J., Li, K., & Kang, W. (2022). Vertical slip distribution along immature active thrust and its implications for fault evolution: A case study from Linze Thrust, Hexi Corridor. Earth Science - Journal of China University of Geosciences, 47(3), 831–843. https://doi.org/10.3799/DQKX.2021.238
Nettis, A., Saponaro, M., & Nanna, M. (2020). RPAS-based framework for simplified seismic risk assessment of Italian RC-bridges. Buildings, 10(9), 150. https://doi.org/10.3390/buildings10090150
Ortiz, D. M., Castro, S. A., Niño, C. V., Guevara, D., & Medina, B. (2022). Identificación de residuos sólidos en zonas urbanas con procesamiento de imágenes e inteligencia artificial. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(1). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2719/3803
Pérez, J. A., Gonçalves, G. R., & Galván, J. M. (2022). Comparative analysis of the land survey using UAS and classical topography in road layout projects. Informes de la Construcción, 74(565). https://doi.org/10.3989/ic.86273
Robledo, Y., Jaimes, E. O., & Araque, A. C. (2022). Herramientas gerenciales orientadas al empoderamiento socioeconómico de la mujer rural, en la provincia de Pamplona, Norte de Santander. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(2). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2725/3798
Reshetyuk, Y., & Mårtensson, S. G. (2016). Generation of highly accurate digital elevation models with unmanned aerial vehicles. The Photogrammetric Record, 31(154), 143–165. https://doi.org/10.1111/phor.12143
Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., & Ordóñez, C. (2018). Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sensing, 10(10), 1606. https://doi.org/10.3390/rs10101606
Serifoglu Yilmaz, C., & Gungor, O. (2018). Comparison of the performances of ground filtering algorithms and DTM generation from a UAV-based point cloud. Geocarto International, 33(5), 522–537. https://doi.org/10.1080/10106049.2016.1265599
Zimmerman, T., Jansen, K., & Miller, J. (2020). Analysis of UAS flight altitude and ground control point parameters on DEM accuracy along a complex, developed coastline. Remote Sensing, 12(14), 2305. https://doi.org/10.3390/rs12142305
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.