Design of an automated system for temperature and humidity control in a Pleurotus Ostreatus mushroom culture cell

Authors

DOI:

https://doi.org/10.24054/rcta.v2i46.4092

Keywords:

culture cell, internet of the things, mushroom, temperature, humidity, automation system

Abstract

This article presents the results obtained in a culture cell through the automated management and control of temperature and relative humidity, variables relevant to the quality of Pleurotus Ostreatus mushroom cultivation, in such a way as to minimize the impact of climate and ensure a quality product for consumption. The article describes the engineering process applied to obtain the control system that interacts with the cell, as well as the results obtained by comparing the control group under normal environmental conditions with the culture that uses technology supported by the Internet of Things (IoT)

Downloads

Download data is not yet available.

Author Biographies

Edgar Rodrigo Enríquez Rosero, Universidad Nacional Abierta y a Distancia

Systems engineer, Specialist in Networks and Telematic Services, MSC in Electrónics and Telecomunications. Professor at the Universidad Nacional Abierta y a Distancia - UNAD. Professor at the Universidad de Nariño.

Gabriel Andrés Obando Obando, Universidad Nacional Abierta y a Distancia

Magister en Desarrollo sostenible y medio ambiente.

References

J. Jiao et al., "Design of farm environmental monitoring system based on the Internet of Things", Advance Journal of Food Science and Technology, vol. 6, no. 3, pp. 368–373, Mar. 2014, doi: 10.19026/ajfst.6.38.

L. Sadath. et al., «Extreme programming implementation in academia for software engineering sustainability,» de 2018 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, Sharjah, Abu Dhabi, United Arab Emirates, 2018.

J. R. Patiño, «Identificación de un plan de detección y corrección de fallas eléctricas en tiempo real, para la Universidad de Nariño a través del empleo de una micro red eléctrica, empleando SCADA (supervisory control and data acquisition) y la comunicación de eventos.,» 2024. [En línea]. Available: https://repository.unad.edu.co/handle/10596/63791. [Last access: 15 10 2024].

Arduino, «Arduino uno Wifi Rev 2 - Arduino official store,» Arduino, [En línea]. Available: https://store.arduino.cc/products/arduino-uno-wifi-rev2?srsltid=AfmBOoqGl-xLkuU_opJw-z4ZAmn1q2WXEGSDoMOnuLWUPxbJRwP60ERJ. [Last access: 20 Febrero 2024].

u-blox, «NINA-W10 series,» [En línea]. Available: https://content.arduino.cc/assets/Arduino_NINA-W10_DataSheet_%28UBX-17065507%29.pdf. [Last access: 20 Febrero 2024].

Microchip, « ATmega4808/4809 Data Sheet,» 2020. [En línea]. Available: https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega4808-4809-Data-Sheet-DS40002173A.pdf. [Last access: 20 Febrero 2024].

Digikey, «TS0010D Datasheet,» [En línea]. Available: https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/5773/TS0010D%20DATASHEET.pdf. [Last access: 20 Febrero 2024].

Nivennesh A/L Sathiabalan. et al., «Autonomous robotic fire detection and extinguishing system,» Journal of Physics: Conference Series, pp. 1-8, 2017.

Sarangi. et al, «Internet of Things: Architectures, Protocols, and Applications,» Journal Electrical and computer Engineering, vol. 2017, nº 1, pp. 1-25, 2017.

D- Robotics, «DHT11 Temperature & Humidity Sensor features a temperature & humidity sensor complex with a calibrated digital signal output,» 2018. [En línea]. Available: https://www.alldatasheet.com/datasheet-pdf/download/1440068/ETC/DHT11.html . [Last access: 20 Febrero 2024].

N. S. Díaz Rodríguez, «Biblioteca de la Universidad de Sevilla,» 2010. [En línea]. Available: https://biblus.us.es/bibing/proyectos/abreproy/11901/fichero/capitulo5.pdf. [Last access: 24 Abril 2024].

C. Remko, «Radio Mobile - RF propagation simulation software,» 3 mayo 2025. [En línea]. Available: http://radiomobile.pe1mew.nl/. [Last access: 24 abril 2024].

P. E. Tirira Caluquí, « Transmisor/recpetor inalámbrico de señales analógicas y digitales basado en la tecnología ZIGBEE, para la comunicación de las estaciones de bombeo de la red principal del sistema de agua potable Sumak-Yaku-Araque del cantón Otavalo,» 2013. [En línea]. Available: https://repositorio.utn.edu.ec/handle/123456789/1057. [Last access: 24 abril 2024].

Naylamp mechatronics, «Tutorial sensor de temperatura y humedad DHT11 y DHT22,» 2016. [En línea]. Available: https://naylampmechatronics.com/blog/40_tutorial-sensor-de-temperatura-y-humedad-dht11-y-dht22.html. [Last access: 11 Marzo 2024].

T. Liu and Z. Zhang, "Design and Application of Greenhouse Intelligent Control System", Frontiers, vol. 9, no. 2, pp. 27–30, Aug. 2024, doi: 10.54097/wja1sz58.

Ubiquiti Networks , «NanoStationM y NanoStationlocoM Datasheet,» 2018. [En línea]. Available: https://dl.ubnt.com/datasheets/nanostationm/nsm_ds_web.pdf. [Last access: 4 Junio 2024].

S. Rubiños Jimenez, «Application of a radio link system in the 400MHz band for remote supervision and control of SEDAPAL service stations in Peru,» de 21st LACCEI International Multi-Conference for Engineering, Education and Technology, Buenos Aires, 2023.

S. Ahmadi, «Chapter 11 - Link-Level and System-Level Performance of LTE-Advanced,» de LTE-Advanced, Academic Press, 2014, pp. 875-949.

Circuit design inc, «Link budget - RF design guide,» [En línea]. Available: https://www.cdt21.com/design_guide/link-budget/. [Last access: 10 Marzo 2024].

N. Rizan, «Internet-of-Things for Smart Agriculture: Current Applications, Future Perspectives, and Limitations,» Agricultural Sciences , vol. 15, nº 12, pp. 1446-1475, 2024.

N. Khan, «Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture,» Sustainability, vol. 13, nº 9, 2021.

Published

2025-07-22

How to Cite

[1]
E. R. Enríquez Rosero and G. A. Obando Obando, “Design of an automated system for temperature and humidity control in a Pleurotus Ostreatus mushroom culture cell”, RCTA, vol. 2, no. 46, pp. 141–149, Jul. 2025.