Passive and customized standing technologies: a bibliometric analysis of their global development and contributions from Latin America

Authors

DOI:

https://doi.org/10.24054/rcta.v2i46.3783

Keywords:

Passive standing, Anthropometric perzonalization, Assistive technologies, Bibliometric analysis, Latina America

Abstract

This article presents a bibliometric analysis of the scientific landscape surrounding passive and anthropometrically personalized standing technologies, with a focus on their global evolution and the notable lack of contributions from Latin America. Based on a systematic review of 435 peer-reviewed articles indexed in Scopus, IEEE Xplore, and Google Scholar between 2010 and 2025, the study applied thematic, geographic, and anthropometric customization filters. Findings indicate a highly concentrated body of research in Asia and Europe, with leading contributions from the University of Tsukuba and EPFL. Moreover, the analysis reveals a persistent gap in integrative approaches that bridge technical design with user-specific adaptation. No Latin American publications met the combined inclusion criteria, highlighting the urgent need to establish a regional research agenda aimed at developing accessible, user-tailored, and contextually relevant assistive standing technologies that address the region’s specific ergonomic and socio-cultural demands.

Downloads

Download data is not yet available.

References

A. Jiménez, C. Grisales, J. S.-E. I. de, y undefined 2019, “Diseño de un sistema cerebro-máquina de miembro superior para la asistencia a la rehabilitación de personas con accidente cerebro-vascular”, acofipapers.org, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://acofipapers.org/index.php/eiei/article/view/277

M. Garabini et al., “A fully soft and passive assistive device to lower the metabolic cost of sit-to-stand”, frontiersin.org, vol. 8, ago. 2020, doi: 10.3389/FBIOE.2020.00966/FULL.

L. P. Quinto, S. B. Goncalves, y M. T. Silva, “Design of a passive exoskeleton to support sit-to-stand movement: A 2D model for the dynamic analysis of motion”, Springer, vol. 22, pp. 299–303, 2019, doi: 10.1007/978-3-030-01887-0_57.

A. Jimenez, A. B.-R. IngEam, y undefined 2018, “Sistemas para la ayuda en la recuperación y la rehabilitación del ACV”, app.eam.edu.co, 2018, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: http://app.eam.edu.co/ojs/index.php/ingeam/article/view/219

E. Gerber, “A Biomechanist’s Guide to Defying Gravity: An Exploration of the Physiological Link between Sensorineural Function and Postural Control”, 2022, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://search.proquest.com/openview/51e9acb790b3bb43bf66532164f8aa1b/1?pq-origsite=gscholar&cbl=18750&diss=y

Y. Z.-P. of the I. of Mechanical y undefined 2024, “User experience of lower extremity exoskeletons and its improvement methodologies: A narrative review”, journals.sagepub.com, dic. 2024, doi: 10.1177/09544119241291194.

Y. Long, Z. Cai, y H. Guo, “AES-SEA and bionic knee based lower limb exoskeleton design and LQR-Virtual tunnel control”, Springer, 2025, doi: 10.1007/S42235-025-00678-9.

Q. Meng et al., “Flexible lower limb exoskeleton systems: A review”, journals.sagepub.com, vol. 50, núm. 4, pp. 367–390, 2022, doi: 10.3233/NRE-210300.

A. Francis et al., “Principles and guidelines for evaluating social robot navigation algorithms”, dl.acm.org, vol. 14, núm. 2, pp. 1–65, jun. 2025, doi: 10.1145/3700599.

C. Marquez-Chin, N. Kapadia-Desai, y S. Kalsi-Ryan, “Brain–computer interfaces: Neurorehabilitation of voluntary movement after stroke and spinal cord injury”, 2022, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://books.google.com/books?hl=es&lr=&id=AYVyEAAAQBAJ&oi=fnd&pg=PP1&dq=(%22Passive+exoskeleton%22+OR+%22passive+assistive+device%22)+AND+(%22bipedal+stance%22+OR+%22sit-to-stand%22)&ots=sdvNab9cBl&sig=iE554ucgedZ6UqA_FFojflENbkA

F. Ghafouri, M. Honarvar, M. J.-I. J. of Biomedical, y undefined 2020, “An Investigation of Dynamic Behavior of a Pointed-Mass Convex-Sole Biped Walker with and without a Passive Controller”, ijbme.org, vol. 14, núm. 1, pp. 1–11, 2020, doi: 10.22041/IJBME.2020.111036.1506.

G. Guevara, E. Verdesoto, y N. Castro, “Metodologías De Investigación Educativa”, 2020, RECIMUNDO: Revista Científica de la Investigación y el Conocimiento. Consultado: el 21 de mayo de 2025. [En línea]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7591592

O. Bentahar y R. Cameron, “Design and implementation of a mixed method research study in project management”, Electronic Journal of Business Research Methods, vol. 13, núm. 1, 2015.

M. Tymkovych et al., “8th European Medical and Biological Engineering Conference: Proceedings of the EMBEC 2020, November 29–December 3, 2020 Portorož, Slovenia”, 2020, doi: 10.1007/978-3-030-64610-3_14.

Elsevier, “Scopus content coverage guide”, 2025. [En línea]. Disponible en: https://www.elsevier.com/__data/assets/pdf_file/0007/69451/scopus-content-coverage-guide.pdf

F. Ballen-Moreno, D. Gomez-Vargas, K. Langlois, J. Veneman, C. A. Cifuentes, y M. Múnera, “Fundamentals for the Design of Lower-Limb Exoskeletons”, Springer, pp. 93–120, sep. 2021, doi: 10.1007/978-3-030-79630-3_3.

I.E.E.E., “IEEE Xplore Digital Library: About.https://ieeexplore.ieee.org/Xplore/home.jsp”, 2025.

J. L. Ortega, “Google Scholar: El buscador académico para todos”, El Profesional de la Información, vol. 23, núm. 3, pp. 264–268, doi: 10.3145/epi.2014.may.13.

I. Halim et al., “A Review on Ergonomics Factors Determining Working in Harmony with Exoskeletons.”, medic.upm.edu.my, vol. 19, núm. 6, pp. 311–327, 2023, doi: 10.47836/mjmhs.19.6.41.

D. Scherb, S. Wartzack, y J. Miehling, “Modelling the interaction between wearable assistive devices and digital human models—A systematic review”, frontiersin.org, vol. 10, ene. 2023, doi: 10.3389/FBIOE.2022.1044275/FULL.

F. Ballen-Moreno, … D. G.-V.-I. H. and, y undefined 2021, “Fundamentals for the Design of Lower-Limb”, books.google.com, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://books.google.com/books?hl=es&lr=&id=zI5DEAAAQBAJ&oi=fnd&pg=PA93&dq=(%22Passive+exoskeleton%22+OR+%22passive+assistive+device%22)+AND+(%22bipedal+stance%22+OR+%22sit-to-stand%22)&ots=EOwbuH8yIa&sig=RGqfPJYhXDnenTOpbADKOCZ4BQ8

F. Ferrari, “An EMG-triggered cooperative controller for a single-joint hybrid FES-robotic system”, 2022, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://www.politesi.polimi.it/handle/10589/208644

S. Chow, “Design and development of a non-powered exoskeleton device to cater to the physical needs of puppeteers”, 2022, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://theses.lib.polyu.edu.hk/handle/200/12233

C. Elisa Panero, S. Laura Gastaldi, F. Bottiglione, P. di Bari, y I. Fabrizio Billi, “Powered exoskeleton for trunk assistance in industrial tasks”, 2020, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://tesidottorato.depositolegale.it/bitstream/20.500.14242/66253/1/Panero_powered_exoskeleton_for_trunk_assistance_in_industrial_tasks_final.pdf

T. Triwiyanto, W. Caesarendra, V. Abdullayev, A. A. Ahmed, y H. Herianto, “Single lead EMG signal to control an upper limb exoskeleton using embedded machine learning on raspberry pi”, journal.umy.ac.id, vol. 4, núm. 1, 2023, doi: 10.18196/jrc.v4.i1.17364.

Y.-S. Li-Baboud et al., “Evaluation methods and measurement challenges for industrial exoskeletons”, mdpi.com, 2023, doi: 10.3390/s23125604.

P. Kuber, A. Kulkarni, E. R.-A. Sciences, y undefined 2024, “Machine learning-based fatigue level prediction for exoskeleton-assisted trunk flexion tasks using wearable sensors”, mdpi.com, vol. 2024, p. 3563, 2024, doi: 10.3390/app14093563.

N. Modi, J. S.-D. and R. Assistive, y undefined 2022, “A survey of research trends in assistive technologies using information modelling techniques”, Taylor & Francis, vol. 17, núm. 6, pp. 605–623, 2022, doi: 10.1080/17483107.2020.1817992.

H. Lee, S. H. Kim, y H. S. Park, “Novel Soft Actuators and Advances in Sensors for Healthcare Applications”, taylorfrancis.com, vol. 8, ago. 2020, doi: 10.3389/FBIOE.2020.00966.

N. Li et al., “Designing unpowered shoulder complex exoskeleton via contralateral drive for self-rehabilitation of post-stroke hemiparesis”, Springer, vol. 20, núm. 3, pp. 992–1007, may 2023, doi: 10.1007/S42235-022-00299-6.

P. Dhatrak, J. Durge, R. K. Dwivedi, H. K. Pradhan, y S. Kolke, “Interactive design and challenges on exoskeleton performance for upper-limb rehabilitation: a comprehensive review”, Springer, 2024, doi: 10.1007/S12008-024-02090-9.

S. D. Ghazaryan, M. G. Harutyunyan, Y. L. Sargsyan, N. B. Zakaryan, y V. Arakelian, “Design of Multifunctional Assistive Devices with Various Arrangements of Gravity Compensation”, Springer, vol. 115, pp. 193–228, 2022, doi: 10.1007/978-3-030-95750-6_8.

M. Gorsic, Y. Song, A. Johnson, … B. D.-2021 43rd A., y undefined 2021, “Simultaneously varying back stiffness and trunk compression in a passive trunk exoskeleton during different activities: A pilot study”, ieeexplore.ieee.org, 2021, doi: 10.1109/EMBC46164.2021.9630081.

D. Prattichizzo et al., “Human augmentation by wearable supernumerary robotic limbs: review and perspectives”, iopscience.iop.org, 2021, doi: 10.1088/2516-1091/AC2294/META.

C. Copilusi, S. Dumitru, I. Geonea, A. Margine, y D. Popescu, “Virtual Prototyping Validation of a Leg Exoskeleton Mechanism from Dynamic Considerations”, Springer, pp. 187–198, 2024, doi: 10.1007/978-3-031-62684-5_17.

U. Umar, H. S. Minhas, N. Naseer, H. Nazeer, S. Iqbal, y M. N. Ahmed, “Design and Simulation of Lower-Limb Exoskeleton to Assist Paraplegic People in Walking”, en 2022 8th International Conference on Control, Decision and Information Technologies, CoDIT, pp. 855 – 860. doi: 10.1109/CoDIT55151.2022.9804158.

B. Quinlivan, “Soft Exosuits for Improved Walking Efficiency and Community Based Post-Stroke Gait Rehabilitation”, 2021, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://search.proquest.com/openview/58c5102f80e89325c3398ee50fe71193/1?pq-origsite=gscholar&cbl=18750&diss=y

N. Elkmann, R. Behrens, M. Hagele, U. Schneider, y S. Oberer-Treitz, “Biologized Robotics and Biomechatronics: Opportunities and Challenges in Human-Robot Collaboration”, Springer, pp. 199–223, ene. 2020, doi: 10.1007/978-3-662-59659-3_11.

K. Pornpipatsakul, N. A.- Robotics, y undefined 2023, “Estimation of knee assistive moment in a gait cycle using knee angle and knee angular velocity through machine learning and artificial stiffness control strategy”, mdpi.com, 2023, doi: 10.3390/robotics12020044.

Y. Eguchi, Posture change support by passive exoskeleton and Research on standing movement equipment. Graduate School of Systems and Information Engineering. University of Tsukuba Department of Intelligent Systems, 2019.

P. Liang, “Development of Next Generation Assistive Wearable Device”, 2024, Consultado: el 27 de abril de 2025. [En línea]. Disponible en: https://search.proquest.com/openview/70ecf90df3b593c346cabf8868d65cb1/1?pq-origsite=gscholar&cbl=2026366&diss=y

D. F. P. Granados, H. Kadone, y K. Suzuki, “Unpowered Lower-Body Exoskeleton with Torso Lifting Mechanism for Supporting Sit-to-Stand Transitions”, en IEEE International Conference on Intelligent Robots and Systems, pp. 2755–2761. doi: 10.1109/IROS.2018.8594199.

A. L. Ármannsdóttir et al., “Assessing the involvement of users during development of lower limb wearable robotic exoskeletons: a survey study”, journals.sagepub.com, vol. 62, núm. 3, pp. 351–364, may 2020, doi: 10.1177/0018720819883500.

S. Stansfield, B. Schelhaas, N. Hogan, y M. Yang, “Understanding the User Perception Gap: Older Adults and Sit-to-Stand Assistance”, asmedigitalcollection.asme.org, vol. 6, 2023, doi: 10.1115/detc2023-116642.

M. Rutka, W. M. Adamczyk, y P. Linek, “Effects of Physical Therapist Intervention on Pulmonary Function in Children With Cerebral Palsy: A Systematic Review and Meta-Analysis”, Phys Ther, vol. 101, núm. 8, doi: 10.1093/ptj/pzab129.

D. N. Wolf, S. J. Fine, C. C. Ice, P. R. Slaughter, K. M. Rodzak, y K. E. Zelik, “Integrating exosuit capabilities into clothing to make back relief accessible to workers unserved by existing exoskeletons: design and preliminary evaluation”, Taylor & Francis, vol. 11, núm. 3–4, pp. 94–107, 2023, doi: 10.1080/24725838.2023.2295859.

S. Crea et al., “Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces”, cambridge.org, vol. 2, p. 11, 2021, doi: 10.1017/wtc.2021.11.

F. Ballen-Moreno, M. Bautista, T. Provot, M. Bourgain, C. A. Cifuentes, y M. Múnera, “Development of a 3D relative motion method for human–robot interaction assessment”, mdpi.com, 2022, doi: 10.3390/s22062411.

M. TANAKA, X. X.-J. A. R. Q. JARQ, y undefined 2025, “Evaluation Methods for the Assist Suit and Agricultural Applications”, jircas.go.jp, vol. 59, núm. 2, pp. 101–118, 2025, doi: 10.6090/jarq.23S20.

S. Ivaldi et al., “Using exoskeletons to assist medical staff during prone positioning of mechanically ventilated COVID-19 patients: a pilot study”, Springer, vol. 263, pp. 88–100, 2021, doi: 10.1007/978-3-030-80744-3_12.

P. Rea, E. Ottaviano, y M. Ruggiu, “The use of CPS for assistive technologies”, Springer, vol. 305, pp. 316–326, 2022, doi: 10.1007/978-3-030-83368-8_31.

P. Herrera-Saray, I. Peláez-Ballestas, L. Ramos-Lira, D. Sánchez-Monroy, y R. Burgos-Vargas, “Problemas con el uso de sillas de ruedas y otras ayudas técnicas y barreras sociales a las que se enfrentan las personas que las utilizan. Estudio cualitativo desde la perspectiva de la ergonomía en personas discapacitadas por enfermedades reumáticas y otras condiciones”, Reumatol Clin, vol. 9, núm. 1, pp. 24–30, doi: 10.1016/j.reuma.2012.05.010.

T. P. García, B. G. González, L. N. Rivero, J. P. Loureiro, E. D. Villoria, y A. P. Sierra, “Exploring the Psychosocial Impact of Wheelchair and Contextual Factors on Quality of Life of People with Neuromuscular Disorders”, Assistive Technology, vol. 27, núm. 4, pp. 246–256, doi: 10.1080/10400435.2015.1045996.

S. L. Groah, M. Schladen, C. G. Pineda, y C.-H. J. Hsieh, “Prevention of Pressure Ulcers Among People With Spinal Cord Injury: A Systematic Review”, PM&R, vol. 7, núm. 6, pp. 613–636, doi: 10.1016/j.pmrj.2014.11.014.

N. Hamilton, W. Weimar, y K. Luttgens, Kinesiology: scientific basis of human motion. McGraw-Hill, 2012.

U. S. D. Justice Civil Rights Division, ADA Standards for Accessible Design Title III Regulation 28 CFR Part 36. Https://Www.Ada.Gov/Law-and-Regs/Design-Standards/1991-Design-Standards/.

Published

2025-07-01

How to Cite

[1]
H. A. Rodríguez Arias and J. C. Rodríguez Ribón, “Passive and customized standing technologies: a bibliometric analysis of their global development and contributions from Latin America”, RCTA, vol. 2, no. 46, pp. 22–31, Jul. 2025.