Method for asbestos detection in hyperspectral images based on the approximate components of the wavelet transform and spectral differential similarity
DOI:
https://doi.org/10.24054/rcta.v2i46.3521Keywords:
Asbestos-cement, hyperspectral images, remote sensing, wavelet transformAbstract
Considering that one of the challenges in material detection within the field of hyperspectral imaging, given its high dimensionality, is the identification of more computationally efficient methods, this article proposes a method for asbestos detection based on the use of the approximate components of the wavelet transform and spectral differential similarity. Variants of the proposed method were implemented using open-source libraries, including Spectral, PyWavelets, NumPy, Pandas, and Matplotlib, achieving similar effectiveness in asbestos detection compared to the correlation-based method. Furthermore, in terms of computational efficiency, it was found that the three variants of the proposed method were more efficient than the correlation-based method, with the method based on the first component of the wavelet transform yielding the best results, being 13.964% more efficient. Based on these results, the variants of the proposed method can be considered as alternatives to conventional methods, allowing them to be integrated into systems for the analysis and monitoring of asbestos and other materials using hyperspectral images. Additionally, this study demonstrated the feasibility of using open-source tools and libraries for material identification in hyperspectral images, making this research a reference point for research centers and universities to replicate and adapt these methods in remote sensing-based investigations.
Downloads
References
J. Awange and J. Kiema, “Fundamentals of Remote Sensing,” 2019, pp. 115–123. doi: 10.1007/978-3-030-03017-9_7.
A. F. Jiménez-López, M. Jiménez-López, and F. R. Jiménez-López, “Multispectral analysis of vegetation for remote sensing applications,” ITECKNE, vol. 12, no. 2, Nov. 2015, doi: 10.15332/iteckne.v12i2.1242.
A. A. Misra, “Remote Sensing Fundamentals,” in Atlas of Structural Geological and Geomorphological Interpretation of Remote Sensing Images, Wiley, 2022, pp. 7–14. doi: 10.1002/9781119813392.ch1.
C. Nansen and N. Elliott, “Remote Sensing and Reflectance Profiling in Entomology,” Annu. Rev. Entomol., vol. 61, no. 1, pp. 139–158, Mar. 2016, doi: 10.1146/annurev-ento-010715-023834.
R. Navalgund, V. Jayaraman, and P. Roy, “Remote sensing applications: An overview,” Curr. Sci., vol. 93, pp. 1747–1766, 2007.
B. Verma, M. Porwal, A. K. Jha, R. G. Vyshnavi, A. Rajpoot, and A. K. Nagar, “Enhancing Precision Agriculture and Environmental Monitoring Using Proximal Remote Sensing,” J. Exp. Agric. Int., vol. 45, no. 8, pp. 162–176, Jul. 2023, doi: 10.9734/jeai/2023/v45i82168.
W. M. Castro Silupu, I. J. Yoplac Tafur, and C. A. López Portocarrero, “Predicción del color y contenido de humedad en café cerezo mediante redes neuronales y regresión de mínimos cuadrados parciales,” Cienc. Amaz., vol. 5, no. 2, p. 91, Dec. 2015, doi: 10.22386/ca.v5i2.94.
M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales,” Rev. Iberoam. Automática e Informática Ind., vol. 16, no. 2, p. 129, Mar. 2019, doi: 10.4995/riai.2019.11078.
L. Gao and R. T. Smith, “Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition,” J. Biophotonics, vol. 8, no. 6, pp. 441–456, Jun. 2015, doi: 10.1002/jbio.201400051.
B. Park, “Future Trends in Hyperspectral Imaging,” NIR news, vol. 27, no. 1, pp. 35–38, Feb. 2016, doi: 10.1255/nirn.1583.
J. Burger and A. Gowen, “Data handling in hyperspectral image analysis,” Chemom. Intell. Lab. Syst., vol. 108, no. 1, pp. 13–22, Aug. 2011, doi: 10.1016/j.chemolab.2011.04.001.
S. Muhammed, R. D, and V. S, “Hyperspectral and Multispectral Image Fusion Techniques,” Int. J. Recent Technol. Eng., vol. 8, no. 5, pp. 467–471, Jan. 2020, doi: 10.35940/ijrte.E4904.018520.
H. González-Núñez and R. de la Fuente, “Offner imaging spectrometers,” Opt. Pura y Apl., vol. 50, no. 1, pp. 37–47, Mar. 2017, doi: 10.7149/OPA.50.1.49506.
G. Bonifazi, G. Capobianco, and S. Serranti, “Asbestos containing materials detection and classification by the use of hyperspectral imaging,” J. Hazard. Mater., vol. 344, pp. 981–993, Feb. 2018, doi: 10.1016/j.jhazmat.2017.11.056.
G. Bonifazi, G. Capobianco, and S. Serranti, “Hyperspectral imaging applied to the identification and classification of asbestos fibers,” in 2015 IEEE SENSORS, IEEE, Nov. 2015, pp. 1–4. doi: 10.1109/ICSENS.2015.7370458.
G. Bonifazi, G. Capobianco, S. Serranti, S. Malinconico, and F. Paglietti, “ASBESTOS DETECTION IN CONSTRUCTION AND DEMOLITION WASTE ADOPTING DIFFERENT CLASSIFICATION APPROACHES BASED ON SHORT WAVE INFRARED HYPERSPECTRAL IMAGING,” Detritus, no. 20, pp. 90–99, Aug. 2022, doi: 10.31025/2611-4135/2022.15211.
G. Bonifazi, G. Capobianco, and S. Serranti, “Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste,” Appl. Sci., vol. 9, no. 21, p. 4587, Oct. 2019, doi: 10.3390/app9214587.
D. Gubiani et al., “A dynamic neural network model for the identification of asbestos roofings in hyperspectral images covering a large regional area,” Comput. Civ. Infrastruct. Eng., Nov. 2024, doi: 10.1111/mice.13376.
M. Krówczynska and E. Wilk, “Identification of asbestos-cement roofing with the use of remote sensing data in the capital city of Poland,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLVIII-3–2, pp. 273–278, Nov. 2024, doi: 10.5194/isprs-archives-XLVIII-3-2024-273-2024.
Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232–6251, Oct. 2016, doi: 10.1109/TGRS.2016.2584107.
J. Torres Tello, “Aprendizaje profundo para predicciones que usan imágenes multiespectrales en agricultura,” ConcienciaDigital, vol. 6, no. 4.1, pp. 75–87, Oct. 2023, doi: 10.33262/concienciadigital.v6i4.1.2734.
M. Unser and T. Blu, “Wavelet theory demystified,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 470–483, Feb. 2003, doi: 10.1109/TSP.2002.807000.
G. C.-H. Chuang and C.-C. J. Kuo, “Wavelet descriptor of planar curves: theory and applications,” IEEE Trans. Image Process., vol. 5, no. 1, pp. 56–70, Jan. 1996, doi: 10.1109/83.481671.
Y. Tounsi, A. Ghlaifan, M. Kumar, F. Mendoza-Santoyo, O. Matoba, and A. Nassim, “Fringe Pattern Analysis in Wavelet Domain,” in Holographic Materials and Applications, IntechOpen, 2019. doi: 10.5772/intechopen.87943.
R. Ohura and T. Minamoto, “A blind digital image watermarking method based on the dyadic wavelet packet transform and fast interval arithmetic techniques,” Int. J. Wavelets, Multiresolution Inf. Process., vol. 13, no. 05, p. 1550040, Sep. 2015, doi: 10.1142/S021969131550040X.
G. E. Chanchí Golondrino, M. A. Ospina Alarcón, and M. Saba, “Vegetation Identification in Hyperspectral Images Using Distance/Correlation Metrics,” Atmosphere (Basel)., vol. 14, no. 7, p. 1148, Jul. 2023, doi: 10.3390/atmos14071148.
M. Kottek and M. L. Yuen, “Public health risks from asbestos cement roofing,” Am. J. Ind. Med., vol. 65, no. 3, pp. 157–161, Mar. 2022, doi: 10.1002/ajim.23321.
M. Krówczynska and E. Wilk, “Environmental and Occupational Exposure to Asbestos as a Result of Consumption and Use in Poland,” Int. J. Environ. Res. Public Health, vol. 16, no. 14, p. 2611, Jul. 2019, doi: 10.3390/ijerph16142611.
C. A. Saito et al., “Sex-Specific Mortality from Asbestos-Related Diseases, Lung and Ovarian Cancer in Municipalities with High Asbestos Consumption, Brazil, 2000–2017,” Int. J. Environ. Res. Public Health, vol. 19, no. 6, p. 3656, Mar. 2022, doi: 10.3390/ijerph19063656.
G. Chanchí-Golondrino, M. Ospina-Alarcón, and M. Saba, “Propuesta de un método computacional para la detección de asbesto en imágenes hiperespectrales a partir de la similitud diferencial espectral,” Rev. Colomb. Tecnol. Av., vol. 1, no. 45, pp. 195–203, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gabriel Elías Chanchí Golondrino, Manuel Saba, Manuel Alejandro Ospina Alarcón

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.