Comparison of phonendoscopic signal reconstruction techniques for pattern analysis cardiac acoustics
DOI:
https://doi.org/10.24054/rcta.v1i45.3257Keywords:
PCA (Principal Component Analysis), Fourier Transform, Heart Sounds, Phonocardiographic Signals, Digital signal processingAbstract
This study evaluates the effectiveness of different techniques of statistical reconstruction of phonocardiographic signals in comparison with classical processing techniques. The problem statement addresses the stadistical signal reconstruction limitations and the advantages of statistical signal reconstruction techniques. The aim is to determine the precision and classic usefulness of these techniques in term of the signal clarity using the SNR and CF, as well as how to explore its potential for broader integration into clinical practice. The methodology includes a comparative analysis of the reconstructed data using statistical techniques and processed using relevant processing techniques, focusing on signal clarity of the signal and the feasibility of its implementation. The results show a SNR in PCA 17.41 dB compared to the mean SNR in traditional techniques 0.575 dB & a mean CF in PCA 10.948 mV compared to CF average in traditional techniques 10,880 mV, can offer improvements in signal clarity, with advantages in term of cost and accessibility. The conclusions suggest that, the statistical reconstruction techniques have the potential to improve signal quality when combined with other processing techniques. This study provides a critical on the applicability of statistical reconstruction techniques of phonocardiographic signals and their role in improving cardiovascular care.
Downloads
References
Z. Yadira and M. Hurtado, “UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA MAESTRIA Y DOCTORADO EN CIENCIAS E INGENIERÍA Captura y Despliegue de Electrocardiograma y Fonocardiograma Multi-sitio T E S I S que presenta para obtener el grado de MAESTRO EN INGENIER´IA.”. [Online]. Available: https://repositorioinstitucional.uabc.mx/bitstream/20.500.12930/2922/1/MXL098918.pdf
A. Estefanía, “Análisis y procesamiento de la señal auscultada del corazón para el diagnóstico presuntivo de soplos cardíacos y arritmia cardíaca,” Ups.edu.ec, 2017, doi: https://dspace.ups.edu.ec/handle/123456789/14152.
Julian David Echeverry, Andres Felipe López, and Juan Fernando López, “Reconocimiento de valvulopatías cardíacas en señales de fonocardiografía empleando la transformada Gabor,” Scientia Et Technica, vol. XIII, no. 34, pp. 139–144, 2023. [Online]. Available: https://www.redalyc.org/articulo.oa?id=84934024
C. Exiga, “Dispositivo para auscultación de ruidos cardiacos.,” Tesis.ipn.mx, 2017, doi: http://tesis.ipn.mx/handle/123456789/21503.
Luis, “Patrones de correlación estadística entre señales electrocardiográficas y fonocardiográficas,” Unal.edu.co, 2014, doi: https://repositorio.unal.edu.co/handle/unal/318.
None Liang Huiying, L. Sakari, and H. Iiro, “A heart sound segmentation algorithm using wavelet decomposition and reconstruction,” Nov. 2002, doi: https://doi.org/10.1109/iembs.1997.757028.
“Vista de Análisis de componentes principales e independientes aplicados a reducción de ruido en señales electrocardiográficas,” Utp.edu.co, 2024. https://revistas.utp.edu.co/index.php/revistaciencia/article/view/3147/1909.
Pedro Mayorga Cordero, J. A. Valdez, C. Druzgalski, Vesna Zeljkovic, Gilberto Chávez Gris, and M. Perez, “Expanded VAD Guided Subdivision of Cardiopulmonary Sounds,” Revista Ingeniería Biomedica, vol. 13, no. 25, pp. 25–34, 2019, doi: https://dialnet.unirioja.es/descarga/articulo/7430878.pdf.
M. Cesarelli, M. Ruffo, M. Romano, and P. Bifulco, “Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms,” Computer Methods and Programs in Biomedicine, vol. 107, no. 3, pp. 513–523, Sep. 2012, doi: https://doi.org/10.1016/j.cmpb.2011.11.008.
P. Mayorga, G. Chavez, V. Arguelles, C. Druzgalski, and V. Zeljkovic, “Detección y extracción automática de eventos S1, S2, S3 y S4 en sonidos del corazón,” Research in Computing Science, vol. 142, no. 1, pp. 9–20, Dec. 2017, doi:https://doi.org/10.13053/rcs-142-1-1.
Rubio Tardío, Javier, Diseño de una aplicación en Matlab para el procesado de señales de fonocardiograma — Archivo Digital UPM, Oa.upm.es, Oct. 2020, doi: https://oa.upm.es/67519/.
L. Orozco-Reyes, M. ángel, Elóisa García-Canseco, and R. F. Ibarra-Hernández, “Clasificación de la señal de audio cardiaco mediante la transformada de Fourier de tiempo corto y aprendizaje profundo,” Research on Computing Science, 2022. https://www.semanticscholar.org/paper/Clasificaci%C3%B3n-de-la-se%C3%B1al-de-audio-cardiaco-la-de-y-Orozco-Reyes-Ar%C3%A9valo/ad188bb65c65ac3ff436f53f7020592156f5dbe1
Alvaro Joaquin Gaona and Pedro David Arini, “Aprendizaje profundo y recurrente para la segmentación de sonidos cardíacos basado en características de frecuencia instantánea,” Elektron, vol. 4, no. 2, pp. 52–57, 2020, Accessed: Feb. 13, 2024. [Online]. Available:http://elektron.fi.uba.ar/index.php/elektron/article/view/101/198
P. Mayorga-Ortiz, J. A. Valdez-Gonzalez, C. Druzgalski, and V. Zeljkovic, “Detección Automática y Clasificación de Eventos en Sonidos Cardiopulmonares de Sujetos Saludables,” Redalyc (Universidad Autónoma del Estado de Mexico), Jan. 2018, doi:https://doi.org/10.17488/rmib.39.1.6.
F. Gómez, Juan Sebastian Osorio-Valencia, and Luisa Fernanda Cuesta-López, “Diseño y construcción de un fonocardiógrafo digital con visualización en LabVIEW,” ResearchGate, Jan. 07, 2007. https://www.researchgate.net/publication/306011663 Diseno y construccion de un fonocardiografo digital con visualizacion en LabVIEW.
Jaime Jalomo Cuevas, I. Palomares, O. Cortez, J. de, and E. Molinar, “ESTUDIO COMPARATIVO DE Te CNICAS PARA FILTRADO DE SEñ ALES EN FONOCARDIOGRAF´IA,” Pistas Educativas, vol. 39, no. 125, 2017, Accessed: Feb. 14, 2024. [Online]. Available: https://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/922/779
E. Alexander, “Caracterización de estados funcionales en fonocardiografía empleando análisis acústico y tecnicas de dinámica no lineal,” Unal.edu.co, 2014, doi: https://repositorio.unal.edu.co/handle/unal/2484.
P. Daniel, “Prototipo de aplicación móvil para tratamiento de señales del fonendoscopio electrónico FonoDX,” Unimilitar.edu.co, 2019, doi:http://hdl.handle.net/10654/32246.
J. Martinez-Alajarin and J. Ruiz, “Estructura jerárquica de un sistema de diagnóstico basado en la señal fonocardiográfica,” ResearchGate, Nov. 2004. https://www.researchgate.net/publication/47515415 Estructura jerarquica de un sistema de diagnostico basado en la senal fonocardiografica.
P. Argibay, “Estadística avanzada en medicina: el análisis de componentes principales.” Available: https://www1.hospitalitaliano.org.ar/multimedia/archivos/noticiasattachs/47/documentos/11019PAG%20107-112HI%203-9%20ICBME.pdf.
L.D. Avendano-Valencia, J. M. Ferrero, and G. Castellanos-Dominguez, “Improved parametric estimation of time frequency representations for cardiac murmur discrimination,” Sep. 2008, doi:https://doi.org/10.1109/cic.2008.4749001.
M. Rouhani and R. Abdoli, “A comparison of different feature extraction methods for diagnosis of valvular heart diseases using PCG signals,” Journal of Medical Engineering & Technology, vol. 36, no. 1, pp. 42–49, Dec. 2011, doi: https://doi.org/10.3109/03091902.2011.634946.
Pegah Derakhshan Mehr, Nader Jafarnia Dabanloo, Gholamreza Attarodi, Keivan Maghooli, and N. Hemmati, “Diagnosis of Aortic Valve Stenosis Based on PCG Signal Using Wavelet Packet Decomposition (WPD) and Parametric Models,” Computing in cardiology, Sep. 2017, doi: https://doi.org/10.22489/cinc.2017.084-296.
Mawloud Guermoui, Mohamed Lamine Mekhalfi, and Karim Ferroudji, “Heart sounds analysis using wavelets responses and support vector machines,” May 2013, doi: https://doi.org/10.1109/wosspa.2013.6602368
O. El Badlaoui, A. Benba, and A. Hammouch, “Novel PCG Analysis Method for Discriminating Between Abnormal and Normal Heart Sounds,” IRBM, vol. 41, no. 4, pp. 223–228, Aug. 2020,doi:https://doi.org/10.1016/j.irbm.2019.12.003.
M. Imani and H. Ghassemian, “Curve fitting, filter bank and wavelet feature fusion for classification of PCG signals,” May 2016, doi:https://doi.org/10.1109/iraniancee.2016.7585518.
Omid Dehghan Manshadi and S. mihandoost, “Murmur identification and outcome prediction in phonocardiograms using deep features based on Stockwell transform,” Scientific Reports, vol. 14, no. 1, Mar. 2024, doi: https://doi.org/10.1038/s41598-024-58274-6.
W. Yang et al., “Diagnosis of cardiac abnormalities based on phonocardiogram using a novel fuzzy matching feature extraction method,” BMC Medical Informatics and Decision Making, vol. 22, no. 1, Sep. 2022, doi:https://doi.org/10.1186/s12911-022-01976-6.
Y. Chen, B. Su, W. Zeng, C. Yuan, and B. Ji, “Abnormal heart sound detection from unsegmented phonocardiogram using deep features and shallow classifiers,” Multimedia Tools and Applications, vol. 82, no. 17, pp. 26859–26883, Jan. 2023, doi:https://doi.org/10.1007/s11042-022-14315-8.
“Precision Diagnosis: An Automated Method for Detecting Congenital Heart Diseases in Children From Phonocardiogram Signals Employing Deep Neural Network,” Umng.edu.co, 2014, doi: https://doi.org/10.1109/ACCESS.2024.3395389.
S. Li, F. Li, S. Tang, and W. Xiong, “A Review of Computer-Aided Heart Sound Detection Techniques,” BioMed Research International, vol. 2020, pp. 1–10, Jan. 2020, doi:https://doi.org/10.1155/2020/5846191.
T. H. Chowdhury, K. N. Poudel and Y. Hu,”Time-Frequency Analysis, Denoising, Compression, Segmentation, and Classification of PCG Signals,¨ in IEEE Access, vol. 8, pp. 160882-160890, 2020, doi: 10.1109/ACCESS.2020.3020806.
E.-S. A. El-Dahshan, M. M. Bassiouni, S. Sharvia, and A.-B. M. Salem, “PCG signals for biometric authentication systems: An in-depth review,” vol. 41, p. 100420, 2021, doi: 10.1016/j.cosrev.2021.100420. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S1574013721000605
S. Shukla, S. K. Singh, and D. Mitra, “An efficient heart sound segmentation approach using kurtosis and zero frequency filter features,” vol. 57, p. 101762, 2020, doi: 10.1016/j.bspc.2019.101762. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S174680941930343X
A. Castro, T. T. V. Vinhoza, S. S. Mattos, and M. T. Coimbra, “Heart sound segmentation of pediatric auscultations using wavelet analysis,” presented at the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 3909–3912, doi:10.1109/EMBC.2013.6610399.
F. Beritelli and S. Serrano, “Biometric Identification Based on Frequency Analysis of Cardiac Sounds,” IEEE Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 596–604, Sep. 2007, doi:https://doi.org/10.1109/tifs.2007.902922.
S. M. Debbal and F Bereksi-Reguig, “Computerized heart sounds analysis,” Computers in Biology and Medicine, vol. 38, no. 2, pp. 263–280, Feb. 2008, doi:https://doi.org/10.1016/j.compbiomed.2007.09.006.
Sumeth Yuenyong, A. Nishihara, Waree Kongprawechnon, and Kanokvate Tungpimolrut, “A framework for automatic heart sound analysis without segmentation,” BioMedical Engineering OnLine, vol. 10, no. 1, pp. 13–13, Jan. 2011, doi: https://doi.org/10.1186/1475-925x-10-13.
Piskorowski, Jacek. (2010). Digital -Varying Notch IIR Filter With Transient Suppression. Instrumentation and Measurement, IEEE Transactions on. 59. 866 - 872. 10.1109/TIM.2009.2026605.
A. Mondal, P. Bhattacharya, and G. Saha, “An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron’s formula,” SpringerPlus, vol. 2, no. 1, Oct. 2013, doi: https://doi.org/10.1186/2193-1801-2-512.
A. Ukil and U. K. Roy, “Smart cardiac health management in IoT through heart sound signal analytics and robust noise filtering,” presented at the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–5, doi: 10.1109/PIMRC.2017.8292659.
F. Mokeddem and S. M. Debbal, “Comparative study between linear filter and discrete wavelet transform for denoising heart sounds signals,” presented at the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2018, pp. 1–5, doi: 10.1109/CISTEM.2018.8613448.
S. K. Ghosh, R. K. Tripathy, and P. R. N, “Evaluation of Performance Metrics and Denoising of PCG Signal using Wavelet Based Decomposition,” presented at the 2020 IEEE 17th India Council International Conference (INDICON), 2020, pp. 1–6, doi: 10.1109/INDICON49873.2020.9342464.
A. B. Kambhampati and B. Ramkumar, “Automatic Detection and Classification of Systolic and Diastolic Profiles of PCG Corrupted Due to Limitations of Electronic Stethoscope Recording,” vol. 21, no. 4, pp. 5292–5302, 2021, doi: 10.1109/JSEN.2020.3028373.
“Noise/spike detection in phonocardiogram signal as a cyclic random process with non-stationary period interval,” Computers in Biology and Medicine, vol. 43, no. 9, pp. 1205–1213, Sep. 2013, doi: https://doi.org/10.1016/j.compbiomed.2013.05.020.
M. K. Zia, B. Griffel, and J. L. Semmlow, “Robust detection of background noise in phonocardiograms,” presented at the 2011 1st Middle East Conference on Biomedical Engineering, 2011, pp. 130–133, doi: 10.1109/MECBME.2011.5752082.
H. Naseri and M. R. Homaeinezhad, “Detection and Boundary Identification of Phonocardiogram Sounds Using an Expert Frequency-Energy Based Metric,” Annals of Biomedical Engineering, vol. 41, no. 2, pp. 279–292, Sep. 2012, doi:https://doi.org/10.1007/s10439-012-0645-x.
J. P. Ramos, P. Carvalho, and M. Coimbra, “Towards a time-feature independent phonocardiogram segmentation,” presented at the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp.2116–2119, doi: 10.1109/EMBC.2013.6609951.
S. Daliman and A. Z. Sha’ameri, ”Time-frequency analysis of heart sounds using windowed and smooth windowed Wigner-ville distribution,”Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings., Paris, France, 2003,pp. 625-626 vol.2, doi: 10.1109/ISSPA.2003.1224958.
P. Ordunez et al., “HEARTS en las Americas: innovaciones para mejorar el manejo de la hipertensión y del riesgo cardiovascular en la atención primaria,” Revista Panamericana de Salud Pública, vol. 46, p. 1, Oct. 2022, doi: https://doi.org/10.26633/rpsp.2022.197.
Oliveira, J., Renna, F., Costa, P., Nogueira, M., Oliveira,A. C., Elola, A., Ferreira, C., Jorge, A., Bahrami Rad, A., Reyna, M., Sameni, R., Clifford, G., & Coimbra, M. (2022). The CirCor DigiScope Phonocardiogram Dataset (version 1.0.3). PhysioNet. https://doi.org/10.13026/tshs-mw03
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.