Ergonomic design of a bionic upper-limp prosthesis controlled by electromyographic signals

Authors

DOI:

https://doi.org/10.24054/rcta.v1i43.2825

Keywords:

Bionic hand, Structural analysis, Autodesk Fusion 360, EMG signals, anthropometric design

Abstract

This paper presents the design of a bionic prosthesis for the upper limb based on anthropometric measurements and controlled by electromyographic signals. The prosthesis is designed to provide users with the ability to perform cylindrical and pincer-shaped grips to contribute to the reintegration of people with disabilities in their upper limbs into social life and try to find total independence. The mechanical design of the prototype was carried out using Autodesk Fusion 360 software. The design was based on a detailed approach, taking into account the specific needs of the users and the characteristics that would allow optimal functioning of the low-cost prosthesis. Mechanical components, such as joints and the previously mentioned gripping systems, are incorporated, giving users versatility when interacting with various objects. As a result, it was obtained that the designed prosthesis does not exceed 10% of the dimensions of a human hand. Finally, the validation of the 3D printed prototype using PLA plastic with the two grips mentioned above and controlled through bioelectric events using EMG signals is presented.

Downloads

Download data is not yet available.

References

National Amputee Statistical Database (NASDAB). The amputee statistical database for the United Kingdom 2006/2007, 2009.

Departamento Administrativo Nacional de Estadística (DANE), Dirección de Censos y Demografía de Pamplona, Norte de Santander, 2010.

A. Sanchez, C. Enrique y E. Aguirre. Diseño de prototipo de prótesis biónica para personas con falta de una de sus extremidades superiores del cuerpo. Repositorio Universidad Estatal de Milagro, 2019.

C. Piazza, G. Grioli, M. Catalano y A. Bicchi, “A century of robotic hands,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 1–32, 2019. DOI: https://doi.org/10.1146/annurev-control-060117-105003

M. Hernando, C. Morillo, D. Guffanti y A. Brunete, “Mechatronic design of a self-contained dexterous robotic hand gestural communication,” International Journal of Social Robotics, pp. 1– 11, 2023. DOI: https://doi.org/10.1007/s12369-022-00963-1

M. Johannes, J. Bigelow, J. Burck, S. Harshbarger, M. Kozlowski, y T. Van Doren, “An overview of the developmental process for the modular prosthetic limb,” Johns Hopkins APL Technical Digest, vol. 30, pp. 207–216, 2011.

M. Laffranchi, N. Boccardo, S. Traverso, L. Lombardi, M. Canepa, A. Lince, M. Semprini, J. A. Saglia, A. Naceri, R. Sacchetti, et. al., “The Hannes hand prosthesis replicates the key biological properties of the human hand,” Science Robotics, vol. 5, 2020. DOI: https://doi.org/10.1126/scirobotics.abb0467

A. Bicchi, “Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity,” IEEE Transactions on Robotics and Automation, vol. 16, pp. 652–662, 2000. DOI: https://doi.org/10.1109/70.897777

F. Cini, V. Ortenzi, P. Corke, y M. Controzzi, “On the choice of grasp type and location when handing over an object,” Science Robotics, vol. 4, 2019. DOI: https://doi.org/10.1126/scirobotics.aau9757

M. Grebenstein, A. Albu-Schäffer, T Bahls, M. Chalon, O. Eiberger, et. al., “The DLR hand arm system,” en IEEE International Conference on Robotics and Automation, 2011. DOI: https://doi.org/10.1109/ICRA.2011.5980371

C. Xiong, W. Chen, B. Sun, M. Liu, S. Yue, y W. Chen, “Design and implementation of an anthropomorphic hand for replicating human grasping functions,” IEEE Transactions on Robotics, vol. 32, pp. 652–671, 2016. DOI: https://doi.org/10.1109/TRO.2016.2558193

N. Jarque-Bou, M. Vergara, J. Sancho-Bru, V. Gracia-Ibáñez, y A. Roda-Sales, “Hand kinematics characterization while performing activities of daily living through kinematics reduction,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, pp. 1556–1565, 2020. DOI: https://doi.org/10.1109/TNSRE.2020.2998642

J. Ning, K. Englehart, y P. Parker. "Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal." IEEE transactions on Biomedical Engineering vol. 4, pp. 1070-1080, 2008. DOI: https://doi.org/10.1109/TBME.2008.2007967

F. Anders, et. al. "Control of upper limb prostheses: Terminology and proportional myoelectric control—A review." IEEE Transactions on neural systems and rehabilitation engineering, vol. 10, pp. 663-677, 2012. DOI: https://doi.org/10.1109/TNSRE.2012.2196711

J. Uellendahl. "Experience fitting partial hand prostheses using prodigits." Univ. of New Brunswick's MyoElectric Controls/Powered Prosthetics Symp. Proc., 2008.

P. Parker y R. Scott. "Myoelectric control of prostheses." Critical reviews in biomedical engineering vol. 4, pp. 283-310, 1986.

X. Wang, B. Zhang y Y. Yang. “Active SVM-based relevance feedback using multiple classifiers ensemble and features reweighting”. Engineering Applications of Artificial Intelligence, vol. 26, pp. 368-381, 2013. DOI: https://doi.org/10.1016/j.engappai.2012.05.008

K. Xing et al. "A real-time EMG pattern recognition method for virtual myoelectric hand control." Neurocomputing, pp. 345-355, 2014. DOI: https://doi.org/10.1016/j.neucom.2013.12.010

J. González, “Robótica y prótesis inteligentes”, Revista Digital Universitaria, vol. 6, no. 1 pp. 11–15, 2004.

M. Vorvick, Northwest Division of Physician Assistant Studies, Department of Family Medicine, UW Medicine, School of Medicine, University of Washington.

R. Madou, et al. "Señales bioeléctricas del cuerpo: de la ingeniería electrónica a la performance artística.", Cuerpo, Máquina, Acción, vol. 4, 2020.

J. Lorenzo. "Análisis de señales electrocardiográficas usando técnicas de procesamiento digital", Tesis, 2015.

D. Subha, P. Joseph, U. Acharya, et al. EEG Signal Analysis: A Survey. J Med Syst vol. 34, pp. 195–212, 2010. DOI: https://doi.org/10.1007/s10916-008-9231-z

J. Chu, I. Moon, Y. Lee, S. Kim, y S. Mun. A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control. IEEE/ASME Trans. Mechatron. Vol. 12, pp. 282–290, 2007. DOI: https://doi.org/10.1109/TMECH.2007.897262

A. Arché-Núñez, et al. "Bio-potential noise of dry printed electrodes: physiology versus the skin-electrode impedance." Physiological Measurement vol. 9, no. 44, 2023. DOI: https://doi.org/10.1088/1361-6579/acf2e7

S. Avrillon, et al. "Tutorial on MUedit: An open-source software for identifying and analysing the discharge timing of motor units from electromyographic signals." bioRxiv, 2023. DOI: https://doi.org/10.1101/2023.07.13.548568

K. Takahashi. "Remarks on emotion recognition from bio-potential signals." 2nd International conference on Autonomous Robots and Agents. Vol. 3. 2004.

A. Oppenheim, R. Schaffer, J. Buck. Discrete-Time Signal Processing. Upper Saddel River, New Jersey: Prentice-Hall, Inc, 1999.

Y. Li, et al. Application of an EMG interference filtering method to dynamic ECGs based on an adaptive wavelet-Wiener filter and adaptive moving average filter. Biomedical Signal Processing and Control, vol. 72, pp. 103-344, 2022. DOI: https://doi.org/10.1016/j.bspc.2021.103344

D. Farina y R. Merletti. "Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions." Journal of Electromyography and Kinesiology, vol. 5, no. 10, 2000. DOI: https://doi.org/10.1016/S1050-6411(00)00025-0

C. Solano, Prototipo de Prótesis biónica para miembro superior. Olimpiadas de Robótica Cúcuta, Unicentro. Disponible en: https://youtube.com/shorts/CSot08GRxzM?feature=share.

Published

2024-03-17 — Updated on 2024-03-17

Versions

How to Cite

[1]
C. A. Solano Rico, O. J. Suarez Sierra, and J. A. Medrano Hermosillo, “Ergonomic design of a bionic upper-limp prosthesis controlled by electromyographic signals”, RCTA, vol. 1, no. 43, pp. 99–109, Mar. 2024.