Design and implementation of a state feedback control system for a Ball and Plate platform

Authors

DOI:

https://doi.org/10.24054/rcta.v1i43.2824

Keywords:

Control, LQR PI Vectorial, Ball and plate

Abstract

This article will show the modeling, development and implementation of a PI-Vector LQR control system for an electromechanical plant with two freedom axes, in this case a “Ball and Plate”. A PI-vector LQR controller greatly improves the system's response times, thus allowing its steady-state errors to be drastically reduced and providing a rapid response to applied external disturbances. This is optimal for this application since it is necessary to have quick and precise control actions that will keep the ball in the desired reference position. This will be achieved through the acquisition of data from a two-axis resistive piezoelectric sensor, which delivers the data of the current position of the ball to an Arduino Mega whose function is to apply the implemented algorithms of reading, to later send the control actions to two MG-995 servo motors that will be responsible for altering the position of the ball by balancing it in the two axes of freedom. The Matlab software and its simulation tool Simulink will be used to obtain the different controller constants and simulate the control loop.

Downloads

Download data is not yet available.

References

S. Awtar, C. Bernard, N. Boklund, A. Master, D. Ueda, and K. Craig, “Mechatronic design of a ball-on-plate balancing system,” Mechatronics, vol. 12, no. 2, pp. 217–228, Mar. 2002, doi: 10.1016/S0957-4158(01)00062-9. DOI: https://doi.org/10.1016/S0957-4158(01)00062-9

A. H. Frank and M. Tjernström, “Construction and theoretical study of a ball balancing platform Limitations when stabilizing dynamic systems through implementation of automatic control theory,” 2019.

J. Ma, H. Tao, and J. Huang, “Observer integrated backstepping control for a ball and plate system,” Int. J. Dyn. Control, vol. 9, no. 1, pp. 141–148, Mar. 2021, doi: 10.1007/s40435-020-00629-8. DOI: https://doi.org/10.1007/s40435-020-00629-8

K. Ogata, Ingenieria de Control Moderno, vol. 53. 1960.

H. M. Díaz, Contabilidad general: enfoque práctico con aplicaciones informáticas. Pearson Education, 2013.

R. C. Dobson, “Sistemas de Segundo Orden,” Univ. Magallanes, pp. 1–13, 2006, Accessed: Oct. 12, 2023. [Online]. Available: http://ona.fi.umag.cl/~rcdhttp://ona.fi.umag.cl/~rcd.

N. Covic and A. Salihbegovic, “The State-Space Representation of MIMO LTI Systems using the Future Inputs Elimination Approach,” 2023. [Online]. Available: https://www.researchgate.net/publication/372216658. DOI: https://doi.org/10.1109/CoDIT58514.2023.10284180

D. Rowell, “State-space representation of lti systems,” URL http//web. mit. edu/2.14/www/Handouts/StateSpace. pdf, no. October, pp. 1–18, 2002, Accessed: Oct. 12, 2023. [Online]. Available: http://www.web.mit.edu/2.14/www/Handouts/StateSpace.pdf%5Cnhttp://files/1757/StateSpace.pdf.

Y. Zhu and Z. Sun, “Minimum realization for controllability/observability of switched linear systems,” Nonlinear Anal. Hybrid Syst., vol. 51, p. 101426, Feb. 2023, doi: 10.1016/j.nahs.2023.101426. DOI: https://doi.org/10.1016/j.nahs.2023.101426

W. P. M. H. Heemels, S. J. L. Van Eijndhoven, and A. A. Stoorvogel, “Linear quadratic regulator problem with positive controls,” Int. J. Control, vol. 70, no. 4, pp. 551–578, Jan. 1998, doi: 10.1080/002071798222208. DOI: https://doi.org/10.1080/002071798222208

P. O. M. Scokaert and J. B. Rawlings, “Constrained linear quadratic regulation,” IEEE Trans. Automat. Contr., vol. 43, no. 8, pp. 1163–1169, 1998, doi: 10.1109/9.704994. DOI: https://doi.org/10.1109/9.704994

Mangin S, “DEVELOPMENT OF A PROTOTYPE BALL-AND-PLATE BALANCING PLATFORM,” 2022.

Quanser, “2 DOF Ball Balancer Student Workbook,” p. 26, 2013.

D. A. Ratkowsky and G. R. Dolby, “Taylor Series Linearization and Scoring for Parameters in Nonlinear Regression,” Appl. Stat., vol. 24, no. 1, p. 109, Mar. 1975, doi: 10.2307/2346709. DOI: https://doi.org/10.2307/2346709

A.-L. Jaime, “CONSTRUCCION DE HOVER CON DISE NO CONTROLADOR PI VECTORIAL,” 2014, pp. 1–5, [Online]. Available: https://www.researchgate.net/publication/299385742.

Published

2024-03-17 — Updated on 2024-03-17

Versions

How to Cite

[1]
R. D. Moncada Diaz and O. O. Rodriguez Diaz, “Design and implementation of a state feedback control system for a Ball and Plate platform”, RCTA, vol. 1, no. 43, pp. 92–98, Mar. 2024.