Characterization of mixtures of natural polymeric materials for encapsulation, by spray drying
DOI:
https://doi.org/10.24054/rcta.v1i41.2412Keywords:
sodium alginate, native cassava starch, oatmeal, encapsulating material, spray dryingAbstract
Background: The characterization of the encapsulating materials to be used in the encapsulation is very important to obtain adequate results and maintain the characteristics of the materials to be encapsulated when subjected to spray drying. Objectives: The objective of this research was to characterize a mixture of natural polymers as an encapsulating material to be used in spray-drying equipment, © Vibrasec brand. Methods: The experimental part was carried out in the facilities of the Engineering Laboratory, University of Córdoba, Montería, Colombia. The physicochemical characterization of the encapsulating material (native cassava starch, oatmeal and sodium alginate) was carried out: granulometric analysis, glass temperature, suspension analysis: pH, acidity, moisture content, apparent density and apparent viscosity, was evaluated. the gelatinization temperature at different concentrations (3.5 and 7%) and temperatures (27, 60 and 90 °C) in order to determine the appropriate temperatures and solid concentrations of the encapsulating material in mixture to prepare the suspensions that meet the drying equipment restrictions (700 mPas) © Vibrasec. Results: The results indicated that sodium alginate should be worked at a maximum of 2% solids concentration and a temperature of 85 °C, while oatmeal (7%) and native cassava starch (10%) should be worked at a temperature of 60°C. In the preparation of the solutions of the mixtures of the encapsulating material, it was established that the maximum concentration of the mixtures should be 12% to obtain a good homogenization of the mixtures and a viscosity (700 mPas) within the restriction of use of the equipment. drying © Vibrasec. Conclusions: It was possible to characterize the encapsulating material made up of oatmeal, sodium alginate and native cassava starch, establishing the appropriate conditions to be subjected to spray drying in the Marca © Vibrasec equipment.
Downloads
References
A.O.A.C. 962.37. (1995). Official Methods of Analysis. Association of Official Analytical Chemist. EUA.
A.O.A.C. 965.22. (1995). Official Methods of Analysis. Association of Official Analytical Chemist. EUA. Análisis granulometrico para harinas.
A.O.A.C. 981.12. (2012). Official Methods of Analysis. Association of Official Analytical Chemist. EUA. pH.
AOAC. (942.15, 2005). Official Methods of Analysis. Association of Official Analytical Chemist. EUA. Acidez.
Aristizábal, J., y Sánchez, T. (2007). Guía técnica para producción y análisis de almidón de yuca. Boletín de servicios agrícolas de la FAO 163. Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma, Pp. 153.
Arslan, S., Erbas, M., Tontul, I., Y Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT-Food Science and Technology, 63(1), 685-690.
Ávila-Reyes, S. V, y otros cuatro autores, (2014). Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability, doi:https://doi.org/10.1016/j.carbpol.2013.11.033, Carbohydrate Polymers, 102, 423 -432.
Barbosa-Cánovas, G. V. (2005). Compression and Compaction Characteristics of Selected Food Powders. En Advances in Food and Nutrition doi:10.1016/S1043-4526. Research. Academic Press, Vol. 49 , págs. 233-307.
Barros, Cp, Silva, R., Guimarães, Jt, Balhtazar, Cf, Verruck, S., Pimentel, Tc, ... & Da Cruz, Ag (2022). Prebióticos y simbióticos en alimentos funcionales. https://doi.org/10.1002/9781119776345.ch2. Alimentos funcionales, 21-53.
Berski, W., A. Ptaszek, P. Ptaszek, R. Ziobro, G. Kowalski, M. Grzesik and B. Achremowicz. (2011). Pasting and rheological properties of oat starch and its derivatives. https://doi.org/10.1016/j.carbpol.2010.08.036. Carbohydrate Polymers 83.: 665-671.
Ceja-Medina, L. I., L. y otros siete autores, (2021). In vitro synbiotic activity of Lactobacillus plantarum encapsulated with mixtures of Aloe vera mucilage, agave fructans and food additives as wall materials, https://doi.org/10.24275/rmiq/Bio2234, Revista Mexicana de Ingeniería Química, ISSN-E: 2395-8472, ISSN:1665-2738, 20 (2): 711–723.
Ceja-Medina, L. I., R. I. Ortiz-Basurto, L. Medina-Torres, F. Calderas, M. J. Bernad-Bernad, R. F. González-Laredo, J. A. Ragazzo-Sánchez, M. Calderón-Santoyo, M. González-Ávila, I. Andradegonzález & O. Manero. (2020). Microencapsulation of Lactobacillus plantarum by spray drying with mixtures of Aloe vera mucilage and agave fructans as wall materials. https://doi.org/10.1111/jfpe.1343. Journal of Food Process Engineering. 43(8): e13436.
CODEX STAN 176. (1989). Norma del Codex Para la Harina de Yuca Comestible.
De Araujo, Scratch Etchepare, M., Raddatz, GC, Cichoski, AJ, Flores, É.M M , Barin , JS , Zepka , LQ , ... & de Menezes , C R. (2016). Efecto del almidón resistente (Hi-maize) sobre la supervivencia de Lactobacillus acidophilus microencapsulado con alginato de sodio. Revista de Alimentos Funcionales, 21, 321–329.
Dikeman, C. L. and G. C. Fahey. (2006). Viscosity as related to dietary fiber: A review. Critical https://doi.org/10.1080/10408390500511862. Reviews in Food Science Nutrition 46 (8):649-663.
Eckert, C. y otros siete autores, (2017). Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials, https://doi.org/10.1016/j.lwt.2017.04.045, LWT Food Sci. Technol. 82, 176–183.
El-Sayed, H. S., Kassem, J. M., El-Shafei, K. A. W. T. H. E. R., Assem, F. M., & Sharaf, O. M. (2017). Comparative evaluation of the microencapsulation methods efficiency to protect probiotic strains in simulated gastric conditions. International Journal of Biology, Pharmacy and Allied Science, ISSN: 2277–4998, 6(3), 521-545.
Etchepare, M., Raddatz, G. C., Cichoski, A. J., Flores, E. M., Barin, J. S., Queiroz, Z. L., y de Menezes, C. R. (2016). Effect of resistant starch (Himaize) on the survival of Lactobacillus acidophillus microencapsulated with sodium alginate. DOI: 10.1016/jff2015.12025. Journal of Functional Foods, 21, 321-329.
Flores-Peña, F. F.; Lozano-Quezada, F.Y.; Ramos-Martínez, A.; Salgado-Delgado, R.; Guerrero-Prieto, V. M.; Ramírez-Mancinas, S.; Bello-Pérez, L. A.; y Zamudio-Flores, P. B. (2013). Caracterización fisicoquímica, reológica y funcional de harina de avena (Avena sativa L. cv Bachíniva) cultivada en la región de Cuauhtémoc, Chihuahua. DOI: https://doi.org/10.54167/tch.v8i3.611. Revista Tecnociencia. Chihuahua. Vol. VIII, Núm. 3.
Fritzen-Freire, C. B. et al., (2021). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Available from: Accessed: Nov. 18, doi: 10.1016/j.foodres.2011.09.020, Food Research International, v. 45, p. 306-312.
Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M., Ordonnaud, C., Peyrat-Maillard, M., y Dumoulin, E. (2006). Encapsulation of oil in poder using spray drying and fluidized bed agglomeration. https://doi.org/10.1016/j.jfoodeng.2005.03.047. Journal of Food Engineering, 75(1), 27 -35.
Gandomi, H., y otros cuatros autores, (2016). Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions, https://doi.org/10.1016/j.lwt.2016.01.064.LWT-Food Science and Technology, 69, 365-371.
García, A., & López, A. (2012). Biopolímeros utilizados en la encapsulación. 6 (1). 84-97. Departamento de Ingeniería Química, Alimentos y Ambiental, Puebla, Recuperado de: https://www. udlap. mx/wp/tsia/files/No6, 1.
Goula, A. M., y Adamopoulos, K. G. (2012). A method for pomegranate seed application in food industries: Seed oil encapsulation,. Food and Bioproducts Processing, 90 (4), 639-652. https://doi.org/10.1016/j.fbp.2012.06.001.
Holkem, At, Raddatz, Gc, Nunes, Gl, Cichoski, Aj, Jacob-Lopes, E., Grosso, Crf Y De Menezes, Cr (2016). Desarrollo y caracterización de microcápsulas de alginato que contienen Bifidobacterium BB-12 producidas por emulsificación/gelificación interna seguida de liofilización. https://doi.org/10.1016/j.lwt.2016.04.012. LWT-Ciencia y tecnología de los alimentos,71, 302-308.
Homayouni-Rad, y otros cuatro autores, (2021). Effect of Alyssum homolocarpum mucilage and inulin microencapsulation on the survivability of Lactobacillus casei in simulated gastrointestinal and high - temperature conditions, https://doi.org/10.1016/j.bcab.2021.102075, Biocatalysis and Agricultural Biotechnology 35: 102075.
Karimi, R., y otros cuatro autores, (2023). Interaction between B-glucans and gut microbiota: a comprehensive review, https://doi.org/10.1080/10408398.2023.2192281, Critical Reviews in Food Science and Nutrition, 1-32.
Lazaridou, A., & Biliaderis, C. G. (2007). Molecular aspects of cereal B-glucan functionality: Physical properties, technological applications and physiological effects. https://doi.org/10.1016/j.jcs.2007.05.003.Journal of cereal science, 46(2), 101-118.
Lupo-Pasin B, González A. C., Maestro G. A. (2012). Microencapsulación con alginato en alimentos. Técnicas y aplicaciones. Revista Venezolana de Ciencia y Tecnología de Alimentos., 3 (1):(2218-4384), 130-151.
Madsen, M., y otros cuatro autores, Simulated gastrointestinal digestion of protein alginate complexes: effects of whey protein cross-linking and the composition and degradation of alginate. https://doi.org/10.1039/D2FO01256A, Food & Function, 13(16), 8375-8387, (2022).
Mikkel Madsen, Mette E. Rønne, Ruifen Li, Ines Greco, Richard Ipsen y Birte Svensson. (2022). Digestión gastrointestinal simulada de complejos de proteína de alginato: efectos del entrecruzamiento de la proteína de suero y la composición y degradación del alginatohttps://doi.org/10.1039/D2FO01256A. This journal is © The Royal Society of Chemistry. Food Funct. volumen13, Pp 8375-8387. N° 16.
Moumita, S. et al., (2017). Evaluation of the viability of free and encapsulated lactic acid bacteria using in-vitro gastro intestinal model and survivability studies of symbiotic microcapsules in dry food matrix during storage. Doi: 10.1016/j.lwt.2016.11.079. LWT- Food Science and Technology, v. 77, p. 40-477.
Nag, A. (2011). Development of microencapsulation technique for probiotic bacteria Lactobacillus casei 431 using a protein polysaccharide complex. New Zealand: Massey University. http://hdl.handle.net/10179/2355.
Nie, S. P., Wang, C., Cui, S. W., Wang, Q., Xie, M. Y., & Phillips, G. O. (2013). A further amendment to the classical core structure of gum Arabic (Acacia senegal). https://doi.org/10.1016/j.foodhyd.2012.09.014. Food Hydrocolloids, 31(1), 42e48.
Nielsen, S. (2010). Viscosity Measurement Using a Brookfield Viscometer. Chapter 20. DOI: 10.1007/978-1-4419-1463-7_20. Food analysis laboratory manual (2), 167 – 168.
Nunes, G. L. et al., (2017). Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. Doi: 10.1016/j.lwt.2017.10.032. LWT- Food Science and Technology, v. 89, p. 128-133.
Paredes-López, O., Bello-Pérez, L. A., y López, M. G. (1994). Amylopectin: Structural, gelatinisation and retrogradation studies. Obtenido de https://doi.org/10.1016/0308-8146(94)90215-1. Food Chemistry, 50(4), 411-417.
Perdomo, J., Cova, A., Sandoval, A., García, L., Laredo, E., y Müller, A. (2009). Glass transition temperature and water sorption isotherms of cassava starch. https://doi.org/10.1016/j.carbpol.2008.10.023. Carbohydrate Polymers, 76, 305–310.
Regand, A., Z. Chowdhury, S. M. Tosh, T. M. S. Wolever and P. Wood. (2011). The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. https://doi.org/10.1016/j.foodchem.2011.04.053. Food Chemistry 129 : 297-304.
Rios-Aguirre, Sara y Gil-Garzon, Maritza Andrea. (2021). Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión. https://doi.org/10.22430/22565337.1836. TecnoL.[online]. vol.24, n.51, pp.206-229. ISSN 0123-7799.
Rodríguez, Y.A., Rojas, A.F., Rodríguez-Barona, S. (2016). Encapsulación de probióticos para aplicaciones alimenticias. Doi: 10.17151/biosa.2016.15.2.10. Revista Biosalud; 15(2): 106-115.
Rodríguez, Y. A., Giraldo, G. I., & Barona, S. (2017). Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: application to microencapsulation of Bifidobacterium animalis subsp. lactis. https://doi.org/10.1111/jfpe.12557. Journal of Food Process Engineering, 40(6), e12557.
Salinas, R. R., Loaiciga, V. Z., & Jaramillo, S. H. (2021). Probióticos: desafíos, revisión y alcance. https://doi.org/10.31434/rms.v6i6.686. Revista Médica Sinergia, 6 (6), e686-e686.
Soto, J. G. M., y otros cinco autores, (2023). Recent developments on wall materials for the microencapsulation of probiotics: A review, DOI: https://doi.org/10.54167/tch.v17i1.1140. Tecnociencia Chihuahua, 17(1), e1140-e1140.
Sun, Weizhe, Quang D. Nguyen, Botond Kálmán Süli, Firas Alarawi, Anett Szécsi, Vijai Kumar Gupta, László Ferenc Friedrich, Attila Gere, And Erika Bujna. (2023). Microencapsulación y Aplicación de Bacteria Probiótica Lactiplantibacillus plantarum 299v Cepa. Microorganismos, 11 (4), 947. https://doi.org/10.3390/microorganisms11040947.
Ta, L. P., y otros seis autores, (2021). Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. International, https://doi.org/10.1016/j.ijbiomac.2021.04.170, Journal of Biological Macromolecules, 183, 1136-1144.
Tamtürk, F., Gürbüz, B., Toker, Ö. S., Dalabasmaz, S., Malakjani, N., Durmaz, Y., & Konar, N. (2023). Optimization of Chlorella vulgaris spray drying using various innovative wall materials. https://doi.org/10.1016/j.algal.2023.103115. Algal Research, 72, 103115.
Tao, T., y otros nueve autores, (2019). Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying, https://doi.org/10.1016/j.jfoodeng.2019.02.009, J. Food Eng, 252, 10–17.
Triviño Valencia, J. (2019). Efecto almacenamiento y las condiciones de estrés sobre la viabilidad de bifidobacterium animalis microencapsulado e incorporado en harina instantánea fortificada a base de plátano dominico hartón (Musa Aabsimmonds). Tesis (Magister en Microbiología Agroindustrial). Universidad Católica de Manizales. Instituto de Investigación en Microbiología y Biotecnología Agroindustrial. https://repositorio.ucm.edu.co/handle/10839/2532.
Wang., Q., Hu, X., Du, Y., y Kennedy, J. F. (2010). Alginate/starch blend fi bers and their properties for drug controlledrelease. https://doi.org/10.1016/j.carbpol.2010.06.004. Carbohydrate Polymers, 82(3), 842-847.
Yonekura, L., Sun, H., Soukoulis, C., Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestión. https://doi.org/10.1016/j.jff.2013.10.008. Journal of Functional Foods, 6, 205–214.
Yuan, C., y otros cuatro autores, (2023). Extraction and prebiotic potential of B-glucan from highland barley and its application in probiotic microcapsules, https://doi.org/10.1016/j.foodhyd, Food Hydrocolloids, 139, 108520.
Zamora-Vega, R., y otros seis autores, (2012), effect of incorporating prebiotics in coating materials for the microencapsulation of Sacharomyces boulardii.https://doi.org/10.3109/09637486.2012.687364. International journal of food sciences and nutrition, 63(8), 930-935.
Zamudio-Flores, P.B. et al. (2015), Digestibilidad in vitro y propiedades térmicas, morfológicas y funcionales de harinas y almidones de avenas de diferentes variedades. Rev. Mex. Ing. Quím [online]. vol.14, n.1 [citado 2023-06-06], pp.81-97. Disponible en: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382015000100008&lng=es&nrm=iso>. ISSN 1665-2738.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.