Criptosistema óptico: una implementación utilizando holografía fotorrefractiva y un modulador LCR2500

Authors

  • Jorge Enrique Rueda Universidad de Pamplona
  • Ana Ludia Romero Universidad de Pamplona

DOI:

https://doi.org/10.24054/rcta.v1i19.1948

Keywords:

Criptografía, Holografía, Mezcla de Ondas, Cristales Fotorrefractivos, Cristales Twisted Nematic

Abstract

En este trabajo se presentan los resultados de la implementación de un procesador de encriptación descencriptación óptica en tiempo real, utilizando difracción en propagación libre como mecanismo de operaciones de correlación y convolución, y el uso de un modulador de cristal líquido (LCR2500) y un cristal fotorrefractivo (Bi12SiO20). Utilizamos las ventajas de la mezcla de cuatro ondas en el cristal fotorrefractivo, por un lado, para almacenar holográficamente la información encriptada, y de otra parte se aprovecha la conjugación de fase para descencriptar la información en paralelo al proceso de encriptación.

Downloads

Download data is not yet available.

References

Chen C. L. (2008). Design and implementation of an optical joint transform encryption system using complex-encoded key mask. Opt. Eng. , 47, 068201.

Francon, M. (1975). Information processing using speckle patterns, in Laser speckle and related phenomena. Springer-Verlag, New York .

Goodman J. W. (1996) Introduction to Fourier Optics. New York: McGraw-Hill, 2da Ed.

Hennelly B. (2003) Optical image encryption by random shifting in fractional Fourier domains. Opt. Lett. , 28, 269.

Javidi B. (1996) Experimental demonstration of the random phase encoding technique for image encryption and security verification. Opt. Eng. , 2506-2512.

Li-Chien L. (2006) Optimal key mask design for optical encryption based on joint transform correlator architecture. Department of Communications Engineering, Feng Chia University, Taichung, Taiwan.

Matoba O. (1999) Encrypted optical storage with angular multiplexing. Appl. Opt, 38, 7288.

Matoba O. (1999a) Encrypted optical storage with wavelength-key and random phase codes. Appl. Opt. , 38, 6785.

Matoba O. (2004) Secure three-dimensional data transmission and display. Appl. Opt. , 43, 2285–2291.

Mela C. (2006) Optical encryption using phaseshifting interferometry in a joint transform correlator. Opt. Lett. , 31, 2562-2564.

Nishchal N. (2003) Optical phase encryption by phase contrast using electrically addressed spatial light modulator. Opt. Eng. , 42, 1583.

Nomura T. (2000) Optical encryption using a joint transform correlator arquitecture. Opt. Eng., 39, 2031–2035.

Refregier P. (1995) Optical image encryption based on input plane Fourier plane random encoding. Opt. Lett., Vol. 20 , 767.

Refregier P. (1995) Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters , 767-769 .

Rueda J. E., Romero A. L. and Guerra L. A (2010) Characterization of Reflective TN-LCD, Tuned in Phase-Only Modulation and to Six Wavelengths Photonics. Letters Of Poland, Vol. 2, No. 4, 174-176.

Shin C. (2005) Image encryption using modified exclusive-or rules and phase-wrapping technique. School of Electrical Engineering and Computer Science, Kyungpook National University, 1370 Sangyuk-Dong, Buk-Gu, Daegu 702-701.

Tajahuerce E. (2000) Optoelectronic information encryption with phase-shifting interferometry. Appl. Opt. , 39, 2313–2320.

Tan X. (2000) Secure optical storage that uses fully phase encryption. Appl. Opt. , 39, 6689.

Unnikrishnan G.. (2000) Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett. , 25, 887.

Vander Lugt A. (1964) Signal detection by complex spatial filtering. IEEE transactions on Information , 10, 139.

Yeh P. (1993) Introduction to photorefractive nonlinear optics. New York : John Wiley & Sons.

Published

2022-11-08 — Updated on 2012-01-02

How to Cite

[1]
J. E. Rueda and A. L. Romero, “Criptosistema óptico: una implementación utilizando holografía fotorrefractiva y un modulador LCR2500”, RCTA, vol. 1, no. 19, pp. 108–112, Jan. 2012.