Application of artificial neuronal networks for coffee price forecast
DOI:
https://doi.org/10.24054/rcta.v1i39.1403Keywords:
Artificial neural networks, backpropagation, perceptron, price forecastingAbstract
This work employs the ability to make forecasts with non-linear models, structured information and supervised models,that artificial neural networks (ANN) make use of, to predict the prices of the arabic-type coffee, serving as support to small and medium coffee entrepreneurs that harvest this product. In addition, the forecasting model is established by the closing value of the dollar and the coffee price. Also, the theoretical development of the basic foundations of neural networks Backpropagation and weight adjustment algorithms. The characterization is performed, followed by a simulation of the forecast process using the Python programming language with the Numpy and Matploit libraries. The result indicates an astonishing amount of success achieved from this model and its performance at learning to minimize errors.
Downloads
References
Aidan, W. (2019), “Inroduction to Neural Networks in Python”, towards data science.
Astray, G., Castillo, J. X., Ferreiro-Lage, J. A., Galvez, J. F., & Mejuto, J. C. (2010), “Artificial neural networks: a promising tool to evaluate the authenticity of wine Redes”. CyTA – Journal of Food, vol. 8(1).
Basogain, X. (2008), Redes neuronales artificiales y sus aplicaciones Dpto. Ingeniería de Sistemas y Automática, Escuela Superior de Ingeniería Bilbao.
Buscema, M.b (1998), “Back propagation neural networks”, Subs. use & misuse, vol.33 (2), p.p 233-270.
Calvo, J., Guzman, M. and Ramos, D. (2018), Machine Learning, Una Pieza Clave En La Transformación De Los Modelos De Negocio, Management Solutions.
da Silva I.N., Hernane Spatti D., Andrade Flauzino R., Liboni L.H.B., dos Reis Alves S.F. (2016), “Artificial Neural Network Architectures and Training Processes”, Artificial Neural Networks. Springer, Cham, pp 21-28.
Desai, S. D., Giraddi, S., Narayankar, P., Pudakalakatti, N. R., & Sulegaon, S. (2019), “Back-propagation neural network versus logistic regression in heart disease classification”, Advanced computing and communication technologies, pp. 133-144, Singapore.
Djilali, L., Suarez, O. J., Sanchez, E. N., Alanis, A. Y., & Garcia, A. P. (2018). Real-time neural backstepping control for a helicopter prototype. Paper presented at the 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedings, , 2017-November 1-6. doi:10.1109/LA-CCI.2017.8285689
Farizawani, A. G., Puteh, M., Marina, Y., & Rivaie, A. (2020), “A review of artificial neural network learning rule based on multiple variant of conjugate gradient approaches”, Journal of Physics: Conference Series, Vol. 1529, No. 2, p.p 022040.
Nielsen, M. A. (2015), neural networks and deep learning, CA: Determination press, Vol. 2018, San Francisco.
Islam, Mohaiminul & Chen, Guorong & Jin, Shangzh,(2019), “An Overview of Neural Network. American Journal of Neural Networks and Applications”, Vol. 5, No. 1, pp. 7-11. doi: 10.11648/j.ajnna.20190501.12
Jiang, Jingchao & Hu, Guobiao & Li, Xiao & Xu, Xun & Zheng, Pai & Stringer, Jonathan. (2019),“Analysis and Prediction of Printable Bridge Length in Fused Deposition Modelling Based on Back Propagation Neural Network”, Virtual and Physical Prototyping, vol. 14(3), p.p 253-266.
Villada, F., Muñoz, N., & García, E. (2012), “Aplicación de las Redes Neuronales al Pronóstico de Precios en el Mercado de Valores”, Inf. tecnol vol.23, no. 4, pp. 11-20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.