Design of a CNC system for bone tissue bioprinting
DOI:
https://doi.org/10.24054/rcta.v1i39.1374Keywords:
Biomaterials, 3D-printing, scaffoldAbstract
Research in the area of bone tissue regeneration has seen significant growth, due to the need to treat bone defects of different types, looking for new options that allow the characterization of living and functional tissue, capable of promoting bone formation from implants designed with biocompatible materials. This article describes the components and the process by which an optimal mixture is obtained for the development of bone tissue cells based on calcium carbonate, hydrolyzed collagen, and acetic acid. The resulting mixture is subsequently used for 3D printing of tibia bone segments, each section undergoing a hemolysis test to determine the cytotoxicity levels of the material and the viability of the mixture used in the printed model.
Downloads
References
Colorado, A. C., Agudelo, C. A., & Moncada, M. E. (2013). Análisis de biomateriales para uso en ingeniería de tejido de piel revisión. Revista Ingeniería Biomédica, 7(14), 11-23.
Corcione, C. E., Natta, L., Scalera, F., Montagna, F., Sannino, A., & Maffezzoli, A. (2015, July). Rapid Prototyping of hydroxyapatite polymer based nanocomposites for bone tissue engineering. In 2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM) (pp. 15-19). IEEE.
Corcione, C. E. (2014). Development and characterization of novel photopolymerizable formulations for stereolithography. Journal of Polymer Engineering, 34(1), 85-93.
Esposito Corcione, C., Striani, R., Montagna, F., & Cannoletta, D. (2015). Organically modified montmorillonite polymer nanocomposites for stereolithography building process. Polymers for Advanced Technologies, 26(1), 92-98.
Hench, L., & Jones, J. (Eds.). (2005). Biomaterials, artificial organs and tissue engineering. Elsevier.
Martínez, C. A., & Ozols, A. (2012). Biomateriales utilizados en cirugía ortopédica como sustitutos del tejido óseo. Revista de la Asociación argentina de ortopedia y traumatología, 77(2), 140-146.
Malinauskas, M., Rekstyte, S., Lukosevicius, L., Butkus, S., Balciunas, E., Peciukaityte, M., & Juodkazis, S. (2014). 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines, 5(4), 839-858.
Shi, J., Zhu, L., Li, Z., Yang, J., & Wang, X. (2017). A design and fabrication method for a heterogeneous model of 3D bio-printing. IEEE Access, 5, 5347-5353.
Scalera, F., Corcione, C. E., Montagna, F., Sannino, A., & Maffezzoli, A. (2014). Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceramics International, 40(10), 15455-15462.
Shin, S. Y., Kang, J. H., & Hahm, K. S. (1999). Structure antibacterial, antitumor and hemolytic activity relationships of cecropin A magainin 2 and cecropin A melittin hybrid peptides. The Journal of peptide research, 53(1), 82-90.
Water, J. J., Bohr, A., Boetker, J., Aho, J., Sandler, N., Nielsen, H. M., & Rantanen, J. (2015). Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. Journal of pharmaceutical sciences, 104(3), 1099-1107.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.