Technological architecture for monitoring environmental variables in a museum
DOI:
https://doi.org/10.24054/rcta.v2i38.1270Keywords:
Environment monitoring, Information systems, Instrumentation, Conservation of collections, Internet of thingsAbstract
This article presents the design and implementation of a system that allows the monitoring of temperature and relative humidity inside a museum. The architecture of the system consists of 3 levels: a lower level composed of DHTx sensors, an intermediate level of acquisition composed of Arduino cards and an upper level of management by Raspberry pi 3 B+ cards. The software was developed mainly on Node-Network and its functions allow: manage the database, deliver reports, send alerts, etc, resulting in a feasible low cost system.
Downloads
References
Arduino. (2005) Arduino nano. Obtenido de https://store.arduino.cc/usa/arduino-nano (Consultado: 5 de Agosto de 2021).
Braco, A. L. (2002). El proyecto RAMA Y su desarrollo en el museo arqueologico nacional. Información de bienes culturales.
Deepsubhra Guha Roy, B. M. (2018). Application awareend to end delay and message loss estimation in Internet of Things (IoT) MQTT SNprotocols. Elsevier, 17.
Ghada Alsuhly, A. K. (2018). An IoT Monitoring and Control Platform for Museum Content Conservation. International conference on computer and applications(ICCA) (pág. 6). Cairo IEEE.
Lopez, A. (2010). Política de museos. Ministerio de Cultura Republica de Colombiana. Bogotá D.C.
Luca Lombardo, S. C. (2017). Sensor Network for Museum EnvironmentalMonitoring. IEEE Instrumentation and Measurement Society, 6.
Milica Lekic, G. G. (2018). IoT sensor integration to Node-RED platform. 17th International Symposium INFOTEH-JAHORINA (pág. 5). Banja Luka: IEEE.
Node-RED. (2013) Node-RED.org. Obtenido de Low-code programming for event-driven applications: https://nodered.org/ (Consultado: 01 de Julio de 2020).
Raspberry. (2010) ¿Que es Raspberry Pi?. Obtenido de https://raspberrypi.cl/que-es-raspberry/ (Consultado: 20 de Julio de 2020)
Salas, A. R. (2005). BARAKA: El sistema de infotmacion de los conjuntos arqueologicos y monumentales de andalucia. Andalucia: VII Jornada de museología.
Thaker, T. (2016). ESP8266 based Implementation of Wireless SensorNetwork with Linux Based Web-Server. Symposium on Colossal Data Analysis and Networking (CDAN) (pág. 5). IEEE.
Tse, J. (2016). Development of a new environmental monitoringsystem for museums and galleries using RFID-enabled technology. Routledge, 4.
UK, D.-R. DHT11 Humidity & Temperature Sensor. Obtenido de: https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf (Consultado: 7 de Julio de 2010).
Zamora, M. S. (2013). Control de condiciones ambientales en salas del museo casa histórica de la independencia en san miguel de tucumán, argentina. 3er congreso iberoamericano y XI jornada: Tecnicas de restauracion y conservacion del patrimonio (pág. 12). TUCUMÁN, ARGENTINA: Universidad Nacional de Tucumán.
Zeliang liu, m. w. (2019). Study on the Anti-Theft Technology of Museum Cultural Relics Based on Internet of Things. IEEE, 9.
Departamento Administrativo de ciencia, T. e. (2018) Convocatoria cierre de brechas tecnologicas. Anexo 1. TRL. Obtenido de https://minciencias.gov.co/sites/default/files/upload/convocatoria/anexo_1._technology_readiness_levels_-_trl.pdf (Consultado: 5 de Julio de 2020).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.