Detección de anomalías en trayectorias de vuelo utilizando autoencoders y segmentación del espacio aéreo basada en regiones de Voronoi

Autores/as

DOI:

https://doi.org/10.24054/rcta.v1i45.3496

Palabras clave:

detección de anomalías, autoencoder, machine learning, aprendizaje no supervisado, regiones de voronoi

Resumen

Dado el creciente tráfico aéreo mundial, este articulo compara dos enfoques de autoencoders para la detección de anomalías en trayectorias aéreas, empleando el algoritmo DBSCAN como referencia inicial. El primer modelo utiliza características continuas normalizadas (latitud, longitud, velocidad y rumbo), mientras que el segundo incorpora una segmentación discreta del espacio aéreo mediante regiones de Voronoi, además de las variables cinemáticas. Los resultados indican una precisión para la detección de anomalías en promedio del 96% en el autoencoder continuo y del 97% en el modelo basado en Voronoi, con este último mostrando una mayor capacidad para identificar trayectorias normales. El análisis cualitativo demostró que los autoencoders, al incluir variables adicionales, capturan anomalías más complejas que DBSCAN. La integración de Voronoi mejoró la explicabilidad del modelo, facilitando la interpretación de las anomalías en su contexto geográfico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

R. H. Cáceres León, “Meteorología aplicada a la seguridad de las operaciones aéreas,” Ciencia y Poder Aéreo, Jun. 2017, doi: https://doi.org/10.18667/9789585996113.

J. Ortega, J. Florez, S. Lorduy, G. Jimenez, and O. Quintero, “Improve decision-making process in Air Command and Control Systems with meteorological data fusion,” in 2021 International Conference on Decision Aid Sciences and Application (DASA), IEEE, Dec. 2021, pp. 636–642. doi: 10.1109/DASA53625.2021.9682330.

J. Mendling, C. Di Ciccio, H. van der Aa, C. Cabanillas, and J. Prescher, “Detecting flight trajectory anomalies and predicting diversions in freight transportation,” Decis Support Syst, 2016, doi: 10.1016/j.dss.2016.05.004.

M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection techniques,” Journal of Network and Computer Applications, vol. 60, pp. 19–31, Jan. 2016, doi: 10.1016/j.jnca.2015.11.016.

R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem, E. Ahmed, and M. Imran, “Real-time big data processing for anomaly detection: A Survey,” Int J Inf Manage, vol. 45, no. February, pp. 289–307, Apr. 2019, doi: 10.1016/j.ijinfomgt.2018.08.006.

M. E. Villa-Pérez, M. Á. Álvarez-Carmona, O. Loyola-González, M. A. Medina-Pérez, J. C. Velazco-Rossell, and K.-K. R. Choo, “Semi-supervised anomaly detection algorithms: A comparative summary and future research directions,” Knowl Based Syst, vol. 218, p. 106878, Apr. 2021, doi: 10.1016/j.knosys.2021.106878.

L. Coelho e Silva and M. C. R. Murça, “A data analytics framework for anomaly detection in flight operations,” J Air Transp Manag, vol. 110, Jul. 2023, doi: 10.1016/j.jairtraman.2023.102409.

M. Aksoy, O. Ozdemir, G. Guner, B. Baspinar, and E. Koyuncu, “Flight trajectory pattern generalization and abnormal flight detection with generative adversarial network,” in AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics Inc, AIAA, 2021, pp. 1–11. doi: 10.2514/6.2021-0775.

X. Olive and L. Basora, “Detection and identification of significant events in historical aircraft trajectory data,” Transp Res Part C Emerg Technol, vol. 119, Oct. 2020, doi: 10.1016/j.trc.2020.102737.

M. Memarzadeh, B. Matthews, and T. Templin, “Multiclass Anomaly Detection in Flight Data Using Semi-Supervised Explainable Deep Learning Model,” Journal of Aerospace Information Systems, vol. 19, no. 2, pp. 83–97, Feb. 2022, doi: 10.2514/1.I010959.

A. Chevrot, A. Vernotte, and B. Legeard, “CAE: Contextual auto-encoder for multivariate time-series anomaly detection in air transportation,” Comput Secur, vol. 116, May 2022, doi: 10.1016/j.cose.2022.102652.

M. Y. Pusadan, J. L. Buliali, and R. V. Hari Ginardi, “Cluster Phenomenon to Determine Anomaly Detection of Flight Route,” Procedia Comput Sci, vol. 161, pp. 516–526, 2019, doi: 10.1016/j.procs.2019.11.151.

S. J. Corrado, T. G. Puranik, O. P. Fischer, and D. N. Mavris, “A clustering-based quantitative analysis of the interdependent relationship between spatial and energy anomalies in ADS-B trajectory data,” Transp Res Part C Emerg Technol, vol. 131, Oct. 2021, doi: 10.1016/j.trc.2021.103331.

Jose Ortega, Jimmy Florez, Mónica Hernández, and Jhon Escobar, “Trajectory Validation for Decision Making in Air. Traffic Management Using Voronoi Diagram,” Journal of Artificial Intelligence and Soft Computing Research, vol. 12, no. 4, 2022, [Online]. Available: https://www.webology.org/data-cms/articles/20230215105345pmWEBOLOGY%2019%20(6)%20-%20164.pdf

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, in KDD’96. AAAI Press, 1996, pp. 226–231.

Unidad Administrativa Especial de la Aeronáutica civil (organization), “ENR 3.2 RUTAS ATS SUPERIORES ENR 3.2 UPPER ATS ROUTES,” Aug. 2024, Accessed: Sep. 20, 2024. [Online]. Available: https://www.aerocivil.gov.co/servicios-a-la-navegacion/servicio-de-informacion-aeronautica-ais/Documents/AIP%20AMDT%2065_23/ENR/ENR%203.2.pdf

Publicado

2025-01-01

Cómo citar

[1]
J. D. Ortega Pabón, J. A. Flórez Zuluaga, y M. P. Hernández Lordui, «Detección de anomalías en trayectorias de vuelo utilizando autoencoders y segmentación del espacio aéreo basada en regiones de Voronoi», RCTA, vol. 1, n.º 45, pp. 82–90, ene. 2025.

Número

Sección

Artículos