Estado del arte sobre la ocurrencia y remoción de ibuprofeno utilizando tecnología de membranas
DOI:
https://doi.org/10.24054/rcta.v2i42.2654Palabras clave:
Ibuprofeno, membranas, nanofiltración, ocurrencia, osmosis inversa, remociónResumen
La presencia de Contaminantes Emergentes (CE) en el ambiente y especialmente en el agua, es debida principalmente al uso diario y creciente de productos de cuidado personal, farmacéuticos y compuestos disruptores endocrinos. Los CE, aun en concentraciones del orden de nanogramos por litro (ng/L), son capaces de generar serios daños potenciales en la salud y en los ecosistemas. El ibuprofeno es un CE del grupo farmacéutico, ampliamente utilizado y de venta libre, lo cual hace que sea de fácil acceso. Esta investigación, realiza una recopilación de algunos estudios a nivel mundial que han reportado la presencia del ibuprofeno a niveles de traza, en el agua superficial, subterránea, efluentes y afluentes de las plantas de tratamiento de agua residual e incluso en el agua potable; así como los porcentajes de remoción que se han obtenido al utilizar tratamientos avanzados, la tecnología de membranas.
Descargas
Citas
Afonso-Olivares, C., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2017). Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Science of the Total Environment, 599–600, 934–943. https://doi.org/10.1016/j.scitotenv.2017.05.058
Alturki, A. A., Tadkaew, N., McDonald, J. A., Khan, S. J., Price, W. E., & Nghiem, L. D. (2010). Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. Journal of Membrane Science, 365(1–2), 206–215. https://doi.org/10.1016/j.memsci.2010.09.008
Aristizabal-Ciro, C., Botero-Coy, A. M., López, F. J., & Peñuela, G. A. (2017). Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply. Environmental Science and Pollution Research, 24(8), 7335–7347. https://doi.org/10.1007/s11356-016-8253-1
Arrubla, J. P., Cubillos, J. A., Ramírez, C. A., Arredondo, J. A., Arias, C. A., & Paredes, D. (2016). Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: Septic tank – Up flow anaerobic filter. Ingeniería e Investigación, 36(1), 70–78. https://doi.org/10.15446/ing.investig.v36n1.53076
Ascar, L., Ahumada, I., López, A., Quintanilla, F., & Leiva, K. (2013). Nonsteroidal anti-inflammatory drug determination in water samples by HPLC-DAD under isocratic conditions. Journal of the Brazilian Chemical Society, 24(7), 1160–1166. https://doi.org/10.5935/0103-5053.20130150
Babay, P. A., Itria, R. F., Romero Ale, E. E., Becquart, E. T., & Gautier, E. A. (2014). Ubiquity of Endocrine Disruptors Nonylphenol and Its Mono- and Di-Ethoxylates in Freshwater, Sediments, and Biosolids Associated with High- and Low-Density Populations of Buenos Aires, Argentina. Clean - Soil, Air, Water, 42(6), 731–737. https://doi.org/10.1002/clen.201300230
Bellona, C., Marts, M., & Drewes, J. E. (2010). The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Separation and Purification Technology, 74(1), 44–54. https://doi.org/10.1016/j.seppur.2010.05.006
Caviedes Rubio, D. I., Delgado, D. R., & Olaya Amaya, A. (2017). Normatividad ambiental dirigida a regular la presencia de los productos farmacéuticos residuales en ambientes acuáticos. Revista Jurídica Piélagus, 16(1), 121. https://doi.org/10.25054/16576799.1445
Ebele, A. J., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004
Elorriaga, Y., Marino, D. J., Carriquiriborde, P., & Ronco, A. E. (2013). Human pharmaceuticals in wastewaters from urbanized areas of Argentina. Bulletin of Environmental Contamination and Toxicology, 90(4), 397–400. https://doi.org/10.1007/s00128-012-0919-x
Espíndola, J. C., & Vilar, V. J. P. (2020). Innovative light-driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: A review. Chemical Engineering Journal, 394(March), 124865. https://doi.org/10.1016/j.cej.2020.124865
Fang, T. H., Nan, F. H., Chin, T. S., & Feng, H. M. (2012). The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Marine Pollution Bulletin, 64(7), 1435–1444. https://doi.org/10.1016/j.marpolbul.2012.04.008
Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399(1), 251–275. https://doi.org/10.1007/s00216-010-4300-9
Félix-Cañedo, T. E., Durán-Álvarez, J. C., & Jiménez-Cisneros, B. (2013a). The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Science of the Total Environment, 454–455, 109–118. https://doi.org/10.1016/j.scitotenv.2013.02.088
Félix-Cañedo, T. E., Durán-Álvarez, J. C., & Jiménez-Cisneros, B. (2013b). The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Science of the Total Environment, 454–455, 109–118. https://doi.org/10.1016/j.scitotenv.2013.02.088
Garcia-Ivars, J., Martella, L., Massella, M., Carbonell-Alcaina, C., Alcaina-Miranda, M. I., & Iborra-Clar, M. I. (2017). Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Research, 125, 360–373. https://doi.org/10.1016/j.watres.2017.08.070
Ge, S., Feng, L., Zhang, L., Xu, Q., Yang, Y., Wang, Z., & Kim, K. H. (2017). Rejection rate and mechanisms of drugs in drinking water by nanofiltration technology. Environmental Engineering Research, 22(3), 329–338. https://doi.org/10.4491/eer.2016.157
Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002
Gibson, R., Becerril-Bravo, E., Silva-Castro, V., & Jiménez, B. (2007). Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry. Journal of Chromatography A, 1169(1–2), 31–39. https://doi.org/10.1016/j.chroma.2007.08.056
Gopal, C. M., Bhat, K., Ramaswamy, B. R., Kumar, V., Singhal, R. K., Basu, H., Udayashankar, H. N., Vasantharaju, S. G., Praveenkumarreddy, Y., Shailesh, Lino, Y., & Balakrishna, K. (2021). Seasonal occurrence and risk assessment of pharmaceutical and personal care products in Bengaluru rivers and lakes, India. Journal of Environmental Chemical Engineering, 9(4), 105610. https://doi.org/10.1016/j.jece.2021.105610
Gros, M., Rodríguez-Mozaz, S., & Barceló, D. (2012). Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem. Journal of Chromatography A, 1248, 104–121. https://doi.org/10.1016/j.chroma.2012.05.084
Holloway, R. W., Regnery, J., Nghiem, L. D., & Cath, T. Y. (2014). Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. Environmental Science and Technology, 48(18), 10859–10868. https://doi.org/10.1021/es501051b
Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices - A review. Journal of Environmental Management, 92(10), 2304–2347. https://doi.org/10.1016/j.jenvman.2011.05.023
Jaffrézic, A., Jardé, E., Soulier, A., Carrera, L., Marengue, E., Cailleau, A., & Le Bot, B. (2017). Veterinary pharmaceutical contamination in mixed land use watersheds: from agricultural headwater to water monitoring watershed. Science of the Total Environment, 609, 992–1000. https://doi.org/10.1016/j.scitotenv.2017.07.206
Jin, X., Shan, J., Wang, C., Wei, J., & Tang, C. Y. (2012). Rejection of pharmaceuticals by forward osmosis membranes. Journal of Hazardous Materials, 227–228, 55–61. https://doi.org/10.1016/j.jhazmat.2012.04.077
Khalaf, S., Al-Rimawi, F., Khamis, M., Zimmerman, D., Shuali, U., Nir, S., Scrano, L., Bufo, S. A., & Karaman, R. (2013). Efficiency of advanced wastewater treatment plant system and laboratory-scale micelle-clay filtration for the removal of ibuprofen residues. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 48(9), 814–821. https://doi.org/10.1080/03601234.2013.781372
Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach, S., Cheung, P., & Whitehead, B. (2011). Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada - Occurrence and treatment efficiency. Science of the Total Environment, 409(8), 1481–1488. https://doi.org/10.1016/j.scitotenv.2011.01.010
Lange, F. T., Scheurer, M., & Brauch, H. J. (2012). Artificial sweeteners-A recently recognized class of emerging environmental contaminants: A review. Analytical and Bioanalytical Chemistry, 403(9), 2503–2518. https://doi.org/10.1007/s00216-012-5892-z
Larsson, E., Al-Hamimi, S., & Jönsson, J. Å. (2014). Behaviour of nonsteroidal anti-inflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fibre liquid phase microextraction and liquid chromatography mass spectrometry. Science of the Total Environment, 485–486(1), 300–308. https://doi.org/10.1016/j.scitotenv.2014.03.055
Li, C., Yang, Y., Liu, Y., & Hou, L. an. (2018). Removal of PhACs and their impacts on membrane fouling in NF/RO membrane filtration of various matrices. Journal of Membrane Science, 548(November 2017), 439–448. https://doi.org/10.1016/j.memsci.2017.11.032
Licona, K. P. M., Geaquinto, L. R. de O., Nicolini, J. v., Figueiredo, N. G., Chiapetta, S. C., Habert, A. C., & Yokoyama, L. (2018). Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. Journal of Water Process Engineering, 25(July), 195–204. https://doi.org/10.1016/j.jwpe.2018.08.002
Liu, Q., Feng, X., Chen, N., Shen, F., Zhang, H., Wang, S., Sheng, Z., & Li, J. (2022). Occurrence and risk assessment of typical PPCPs and biodegradation pathway of ribavirin in wastewater treatment plants. Environmental Science and Ecotechnology, 11. https://doi.org/10.1016/j.ese.2022.100184
Madera-Parra, C. A., Jiménez-Bambague, E. M., Toro-Vélez, A. F., Lara-Borrero, J. A., Bedoya-Ríos, D. F., & Duque-Pardo, V. (2018). Estudio exploratorio de la presencia de microcontaminantes en el ciclo urbano del agua en Colombia: Caso de estudio Santiago de Cali. Revista Internacional de Contaminacion Ambiental, 34(3), 475–487. https://doi.org/10.20937/RICA.2018.34.03.10
Mandaric, L., Mor, J. R., Sabater, S., & Petrovic, M. (2018). Impact of urban chemical pollution on water quality in small, rural and effluent-dominated Mediterranean streams and rivers. Science of the Total Environment, 613–614, 763–772. https://doi.org/10.1016/j.scitotenv.2017.09.128
Maroneze, M. M., Zepka, L. Q., Vieira, J. G., Queiroz, M. I., & Jacob-Lopes, E. (2014). A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais. Revista Ambiente e Agua, 9(3), 445–458. https://doi.org/10.4136/1980-993X
Maryam, B., Buscio, V., Odabasi, S. U., & Buyukgungor, H. (2020). A study on behavior, interaction and rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes. Environmental Technology and Innovation, 18, 100641. https://doi.org/10.1016/j.eti.2020.100641
Matongo, S., Birungi, G., Moodley, B., & Ndungu, P. (2015). Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere, 134, 133–140. https://doi.org/10.1016/j.chemosphere.2015.03.093
Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, & National Health and Medical Research Council. (2008). Australian guidelines for water recycling. Managing health and environmental risks (phase 2): Augmentation of Drinking Water Supplies (pp. 1–174). Biotext Pty Ltd.
Nghiem, L. D., Schäfer, A. I., & Elimelech, M. (2006). Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. Journal of Membrane Science, 286(1–2), 52–59. https://doi.org/10.1016/j.memsci.2006.09.011
Ngubane, N. P., Naicker, D., Ncube, S., Chimuka, L., & Madikizela, L. M. (2019). Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: A case of northern Durban in KwaZulu–Natal Province of South Africa. Regional Studies in Marine Science, 29, 100675. https://doi.org/10.1016/j.rsma.2019.100675
Niemi, L., Landová, P., Taggart, M., Boyd, K., Zhang, Z., & Gibb, S. (2022). Spatiotemporal trends and annual fluxes of pharmaceuticals in a Scottish priority catchment. Environmental Pollution, 292, 118295. https://doi.org/10.1016/j.envpol.2021.118295
Nosek, K., Styszko, K., & Golas, J. (2014). Combined method of solid-phase extraction and GC-MS for determination of acidic, neutral, and basic emerging contaminants in wastewater (Poland). International Journal of Environmental Analytical Chemistry, 94(10), 961–974. https://doi.org/10.1080/03067319.2014.900680
Padhye, L. P., Yao, H., Kung’u, F. T., & Huang, C. H. (2014). Year-long evaluation on the occurrence and fate ofpharmaceuticals, personal care products, andendocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 51, 266–276. https://doi.org/10.1016/j.watres.2013.10.070
Pai, C. W., Leong, D., Chen, C. Y., & Wang, G. S. (2020). Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes. Chemosphere, 256, 127002. https://doi.org/10.1016/j.chemosphere.2020.127002
Papagiannaki, D., Morgillo, S., Bocina, G., Calza, P., & Binetti, R. (2021). Occurrence and human health risk assessment of pharmaceuticals and hormones in drinking water sources in the metropolitan area of turin in Italy. Toxics, 9(4), 1–13. https://doi.org/10.3390/toxics9040088
Paruch, L., & Paruch, A. M. (2021). Cross-tracking of faecal pollution origins, macronutrients, pharmaceuticals and personal care products in rural and urban watercourses. Water Science and Technology, 83(3), 610–621. https://doi.org/10.2166/wst.2020.603
Pereira, C. D. S., Maranho, L. A., Cortez, F. S., Pusceddu, F. H., Santos, A. R., Ribeiro, D. A., Cesar, A., & Guimarães, L. L. (2016). Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone. Science of the Total Environment, 548–549, 148–154. https://doi.org/10.1016/j.scitotenv.2016.01.051
Pérez-Parada, A., Niell, S., Colazzo, M., Besil, N., Cesio, V., & Heinzen, H. (2012). EVALUACIÓN PRELIMINAR DE LA OCURRENCIA DE CONTAMINANTES EMERGENTES EN AGUAS RESIDUALES DE MONTEVIDEO, URUGUAY Preliminary evaluation of emerging contaminants presence in sewage waters in Montevideo, Uruguay. 7mo. Congreso de Medio Ambiente, 2–19. http://sedici.unlp.edu.ar/handle/10915/26665
Pomati, F., Castiglioni, S., Zuccato, E., Fanelli, R., Vigetti, D., Rossetti, C., & Calamari, D. (2006). Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environmental Science and Technology, 40(7), 2442–2447. https://doi.org/10.1021/es051715a
Pompei, C. M. E., Campos, L. C., da Silva, B. F., Fogo, J. C., & Vieira, E. M. (2019). Occurrence of PPCPs in a Brazilian water reservoir and their removal efficiency by ecological filtration. Chemosphere, 226, 210–219. https://doi.org/10.1016/j.chemosphere.2019.03.122
Poynton, H. C., & Robinson, W. E. (2018). Contaminants of Emerging Concern, With an Emphasis on Nanomaterials and Pharmaceuticals. In Green Chemistry: An Inclusive Approach. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809270-5.00012-1
Praveenkumarreddy, Y., Vimalkumar, K., Ramaswamy, B. R., Kumar, V., Singhal, R. K., Basu, H., Gopal, C. M., Vandana, K. E., Bhat, K., Udayashankar, H. N., & Balakrishna, K. (2021). Assessment of non-steroidal anti-inflammatory drugs from selected wastewater treatment plants of Southwestern India. Emerging Contaminants, 7, 43–51. https://doi.org/10.1016/j.emcon.2021.01.001
Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., Briceño-Guevara, S., Rojas-Sánchez, C. E., Méndez-Rivera, M., Arias-Mora, V., Tormo-Budowski, R., Brenes-Alfaro, L., & Rodríguez-Rodríguez, C. E. (2020). Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. Science of the Total Environment, 746, 141200. https://doi.org/10.1016/j.scitotenv.2020.141200
Richardson, S. D. (2008). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 80(12), 4373–4402. https://doi.org/10.1021/ac800660d
Richardson, S. D., & Kimura, S. Y. (2017). Emerging environmental contaminants: Challenges facing our next generation and potential engineering solutions. Environmental Technology and Innovation, 8, 40–56. https://doi.org/10.1016/j.eti.2017.04.002
Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361–380. https://doi.org/10.1016/j.cej.2017.04.106
Silva, S., Cardoso, V. V., Duarte, L., Carneiro, R. N., & Almeida, C. M. M. (2021). Characterization of five portuguese wastewater treatment plants: Removal efficiency of pharmaceutical active compounds through conventional treatment processes and environmental risk. Applied Sciences (Switzerland), 11(16). https://doi.org/10.3390/app11167388
Skocovska, M., Ferencik, M., Svoboda, M., & Svobodova, Z. (2021). Residues of selected sulfonamides, non-steroidal anti-inflammatory drugs and analgesics-antipyretics in surface water of the Elbe River basin (Czech Republic). Veterinarni Medicina, 66(5), 208–218. https://doi.org/10.17221/180/2020-VETMED
Son, D. J., Kim, C. S., Park, J. W., Lee, S. H., Chung, H. M., & Jeong, D. H. (2021). Spatial variation of pharmaceuticals in the unit processes of full-scale municipal wastewater treatment plants in Korea. Journal of Environmental Management, 286(October 2020), 112150. https://doi.org/10.1016/j.jenvman.2021.112150
Sossalla, N. A., Nivala, J., Reemtsma, T., Schlichting, R., König, M., Forquet, N., van Afferden, M., Müller, R. A., & Escher, B. I. (2021). Removal of micropollutants and biological effects by conventional and intensified constructed wetlands treating municipal wastewater. Water Research, 201. https://doi.org/10.1016/j.watres.2021.117349
Starling, M. C. V. M., Amorim, C. C., & Leão, M. M. D. (2019). Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. Journal of Hazardous Materials, April, 17–36. https://doi.org/10.1016/j.jhazmat.2018.04.043
Suazo, F., Vásquez, J., Retamal, M., Ascar, L., & Giordano, A. (2017). Pharmaceutical compounds determination in water samples: Comparison between solid phase extraction and STIR Bar sorptive extraction. Journal of the Chilean Chemical Society, 62(3), 3597–3601. https://doi.org/10.4067/s0717-97072017000303597
Togola, A., & Budzinski, H. (2008). Multi-residue analysis of pharmaceutical compounds in aqueous samples. Journal of Chromatography A, 1177(1), 150–158. https://doi.org/10.1016/j.chroma.2007.10.105
Tran, N. H., Reinhard, M., & Gin, K. Y. H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029
Urtiaga, A. M., Pérez, G., Ibáñez, R., & Ortiz, I. (2013). Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination, 331, 26–34. https://doi.org/10.1016/j.desal.2013.10.010
Valladares Linares, R., Yangali-Quintanilla, V., Li, Z., & Amy, G. (2011). Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Research, 45(20), 6737–6744. https://doi.org/10.1016/j.watres.2011.10.037
Verliefde, A. R. D., Cornelissen, E. R., Heijman, S. G. J., Petrinic, I., Luxbacher, T., Amy, G. L., Van der Bruggen, B., & van Dijk, J. C. (2009). Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. Journal of Membrane Science, 330(1–2), 90–103. https://doi.org/10.1016/j.memsci.2008.12.039
Vulliet, E., Cren-Olivé, C., & Grenier-Loustalot, M. F. (2011). Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environmental Chemistry Letters, 9(1), 103–114. https://doi.org/10.1007/s10311-009-0253-7
Waleng, N. J., & Nomngongo, P. N. (2022). Occurrence of pharmaceuticals in the environmental waters: African and Asian perspectives. Environmental Chemistry and Ecotoxicology, 4, 50–66. https://doi.org/10.1016/j.enceco.2021.11.002
Wu, J. M., Wei, L., Peng, J. Q., He, P., Shi, H. Y., Tang, D. M., & Wu, Z. bin. (2022). Spatiotemporal Distribution and Risk Assessment of Pharmaceuticals in Typical Drinking Water Sources in the Middle Reaches of the Yangtze River. Huanjing Kexue/Environmental Science, 43(6), 2996–3004. https://doi.org/10.13227/j.hjkx.202109051
Wu, J., Qian, X., Yang, Z., & Zhang, L. (2010). Study on the matrix effect in the determination of selected pharmaceutical residues in seawater by solid-phase extraction and ultra-high-performance liquid chromatography-electrospray ionization low-energy collision-induced dissociation tandem mass spectr. Journal of Chromatography A, 1217(9), 1471–1475. https://doi.org/10.1016/j.chroma.2009.12.074
Yao, B., Yan, S., Lian, L., Yang, X., Wan, C., Dong, H., & Song, W. (2018). Occurrence and indicators of pharmaceuticals in Chinese streams: A nationwide study. Environmental Pollution, 236, 889–898. https://doi.org/10.1016/j.envpol.2017.10.032
Zur, J., Pinski, A., Marchlewicz, A., Hupert-Kocurek, K., Wojcieszynska, D., & Guzik, U. (2011). Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. 2284, 1–4.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.