This is an outdated version published on 2023-05-10. Read the most recent version.

21st century engineering education challenges

Authors

DOI:

https://doi.org/10.24054/rcta.v1i41.2416

Keywords:

Education, engineering, 21st century

Abstract

Engineering programs have a crucial role to play in the successful formation of future engineers, according to the 21st century society needs. Through a systematic literature review, dialogue with academia, industry and governmental stakeholders fundamental topics that engineering programs must constantly monitor to adapt their curricula, teaching methods, student admission and retention processes, were identified. Within these topics are: the rapid changes in the labor market, technological advances and the growing need for diversity and inclusion. To deal with these challenges, engineering teaching must be more adaptable, receptive and integrative, and focus on the development of the most demanded competences in the labor market, a more practical learning and based on projects, interdisciplinary approaches, interpersonal competencies and ethical and social elements.

References

Abd-Elwahed, M. S., & Al-Bahi, A. M. (2021). Sustainability awareness in engineering curriculum through a proposed teaching and assessment framework. International Journal of Technology and Design Education, 31(3), 633–651. https://doi.org/10.1007/s10798-020-09567-0

Ahmed, F., Capretz, L. F., & Campbell, P. (2012). Evaluating the Demand for Soft Skills in Software Development. IT Professional, 14(1), 44–49. https://doi.org/10.1109/MITP.2012.7

BISSELL, C., & BENNETT, S. (1997). The Role of the History of Technology in the Engineering Curriculum. European Journal of Engineering Education, 22(3), 267–275. https://doi.org/10.1080/03043799708923459

Cardoso, M., & Chanin, R. M. (2022). The history of Engineering Education: learning from the past to design the future . Research, Society and Development, 11(11 SE-), e364111133606. https://doi.org/10.33448/rsd-v11i11.33606

Constantinides, E., & Zinck Stagno, M. C. (2011). Potential of the social media as instruments of higher education marketing: a segmentation study. Journal of Marketing for Higher Education, 21(1), 7–24. https://doi.org/10.1080/08841241.2011.573593

Coskun, S., & Gencay, E. (2019). Adapting Engineering Education to Industry 4.0 Vision. In Technologies (Vol. 7, Issue 1). https://doi.org/10.3390/technologies7010010

Diekman, A. B., Weisgram, E. S., & Belanger, A. L. (2015). New Routes to Recruiting and Retaining Women in STEM: Policy Implications of a Communal Goal Congruity Perspective. Social Issues and Policy Review, 9(1), 52–88. https://doi.org/https://doi.org/10.1111/sipr.12010

Direito, I., Pereira, A., & Duarte, A. M. de O. (2012). Engineering Undergraduates’ Perceptions of Soft Skills: Relations with Self-Efficacy and Learning Styles. Procedia - Social and Behavioral Sciences, 55, 843–851. https://doi.org/https://doi.org/10.1016/j.sbspro.2012.09.571

Edström, K., & Kolmos, A. (2014). PBL and CDIO: complementary models for engineering education development. European Journal of Engineering Education, 39(5), 539–555. https://doi.org/10.1080/03043797.2014.895703

Friedel, R. (1986). Engineering in the 20th Century. Technology and Culture, 27(4), 669–673. https://doi.org/10.2307/3105321

Froyd, J. E., Wankat, P. C., & Smith, K. A. (2012). Five Major Shifts in 100 Years of Engineering Education. Proceedings of the IEEE, 100(Special Centennial Issue), 1344–1360. https://doi.org/10.1109/JPROC.2012.2190167

Grimson, J. (2002). Re-engineering the curriculum for the 21st century. European Journal of Engineering Education, 27(1), 31–37. https://doi.org/10.1080/03043790110100803

Guntzburger, Y., Pauchant, T. C., & Tanguy, P. A. (2017). Ethical Risk Management Education in Engineering: A Systematic Review. Science and Engineering Ethics, 23(2), 323–350. https://doi.org/10.1007/s11948-016-9777-y

Hall, C. W., Kauffmann, P. J., Wuensch, K. L., Swart, W. E., DeUrquidi, K. A., Griffin, O. H., & Duncan, C. S. (2015). Aptitude and Personality Traits in Retention of Engineering Students. Journal of Engineering Education, 104(2), 167–188. https://doi.org/https://doi.org/10.1002/jee.20072

Hammond, G. P. (2004). Engineering sustainability: thermodynamics, energy systems, and the environment. International Journal of Energy Research, 28(7), 613–639. https://doi.org/https://doi.org/10.1002/er.988

Judson, E., Ernzen, J., Chen, Y.-C., Krause, S., Middleton, J., & Culbertson, R. (2015). What is the effect of establishing programs that address sense of belonging on undergraduate engineering retention? 2015 IEEE Frontiers in Education Conference (FIE), 1–8. https://doi.org/10.1109/FIE.2015.7344202

Kaminski, W., Marszalek, J., & Ciolkowska, A. (2008). Renewable energy source—Dehydrated ethanol. Chemical Engineering Journal, 135(1), 95–102. https://doi.org/https://doi.org/10.1016/j.cej.2007.03.017

Karim, M. S. A. (2016). Entrepreneurship Education in an Engineering Curriculum. Procedia Economics and Finance, 35, 379–387. https://doi.org/https://doi.org/10.1016/S2212-5671(16)00047-2

Li, K. F., Zielinski, A., & Gebali, F. (2012). Capstone team design projects in engineering curriculum: Content and management. Proceedings of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012, T1C-1-T1C-6. https://doi.org/10.1109/TALE.2012.6360372

Lucena, J. C. (2003). Flexible Engineers: History, Challenges, and Opportunities for Engineering Education. Bulletin of Science, Technology & Society, 23(6), 419–435. https://doi.org/10.1177/0270467603259875

Martin, J. P., Simmons, D. R., & Yu, S. L. (2013). The Role of Social Capital in the Experiences of Hispanic Women Engineering Majors. Journal of Engineering Education, 102(2), 227–243. https://doi.org/https://doi.org/10.1002/jee.20010

Maton, K. I., Pollard, S. A., McDougall Weise, T. V, & Hrabowski, F. A. (2012). Meyerhoff Scholars Program: A Strengths-Based, Institution-Wide Approach to Increasing Diversity in Science, Technology, Engineering, and Mathematics. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 79(5), 610–623. https://doi.org/https://doi.org/10.1002/msj.21341

McGowan, A. H. (2013). Teaching Science and Ethics to Undergraduates: A Multidisciplinary Approach. Science and Engineering Ethics, 19(2), 535–543. https://doi.org/10.1007/s11948-011-9338-3

Moakler Jr., M. W., & Kim, M. M. (2014). College Major Choice in STEM: Revisiting Confidence and Demographic Factors. The Career Development Quarterly, 62(2), 128–142. https://doi.org/https://doi.org/10.1002/j.2161-0045.2014.00075.x

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990

Ozadowicz, A. (2020). Modified Blended Learning in Engineering Higher Education during the COVID-19 Lockdown—Building Automation Courses Case Study. In Education Sciences (Vol. 10, Issue 10). https://doi.org/10.3390/educsci10100292

Picon, A. (2004). Engineers and engineering history: problems and perspectives. History and Technology, 20(4), 421–436. https://doi.org/10.1080/0734151042000304367

Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrovic, V. M., & Jovanovic, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/https://doi.org/10.1016/j.compedu.2016.02.002

Rao, M. S. (2014). Enhancing employability in engineering and management students through soft skills. Industrial and Commercial Training, 46(1), 42–48. https://doi.org/10.1108/ICT-04-2013-0023

Salazar-Fernandez, J. P., Sepúlveda, M., & Munoz-Gama, J. (2019). Influence of Student Diversity on Educational Trajectories in Engineering High-Failure Rate Courses that Lead to Late Dropout. 2019 IEEE Global Engineering Education Conference (EDUCON), 607–616. https://doi.org/10.1109/EDUCON.2019.8725143

Sari, R. C., Warsono, S., Ratmono, D., Zuhrohtun, Z., & Hermawan, H. D. (2021). The effectiveness of teaching virtual reality-based business ethics: is it really suitable for all learning styles? Interactive Technology and Smart Education, ahead-of-p(ahead-of-print). https://doi.org/10.1108/ITSE-05-2021-0084

Schipper, M., & Stappen, E. van der. (2018). Motivation and attitude of computer engineering students toward soft skills. 2018 IEEE Global Engineering Education Conference (EDUCON), 217–222. https://doi.org/10.1109/EDUCON.2018.8363231

Secundo, G., Elia, G., Margherita, A., & Passiante, G. (2012). Student diversity in engineering education: Insights to build a glocal program. Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON), 1–8. https://doi.org/10.1109/EDUCON.2012.6201143

Shahabadkar, P. K., Vispute, P. S., & Nandurkar, K. N. (2015). Soft Skills Training Through Cooperative Learning: A Case Study BT - Proceedings of the International Conference on Transformations in Engineering Education (R. Natarajan (ed.); p. 573). Springer India.

Steffen, W., Grinevald, J., Crutzen, P., & McNeill, J. (2011). The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 842–867. https://doi.org/10.1098/rsta.2010.0327

Stephanopoulos, G., & Reklaitis, G. V. (2011). Process systems engineering: From Solvay to modern bio- and nanotechnology.: A history of development, successes and prospects for the future. Chemical Engineering Science, 66(19), 4272–4306. https://doi.org/https://doi.org/10.1016/j.ces.2011.05.049

Sydorenko, V. (2020). Soft skills as an educational trend and a necessary development component for a vocational lifelong education teacher. Fundamental and Applied Researches in Practice of Leading Scientific Schools, 38(2 SE-Articles). https://doi.org/https://doi.org/10.33531/farplss.2020.2.23

Vo, H.-P., Berglund, A., & Daniels, M. (2017). A Perspective from Vietnamese Students on Teaching of Soft Skills. 2017 International Conference on Learning and Teaching in Computing and Engineering (LaTICE), 23–24. https://doi.org/10.1109/LaTiCE.2017.11

Waizmann, B., Schuhbauer, H., & Brockmann, P. (2020). Smart Technology to Improve Cultural and Gender Diversity in Engineering Education. 2020 IEEE Global Engineering Education Conference (EDUCON), 61–65. https://doi.org/10.1109/EDUCON45650.2020.9125350

Williams, S. A., Lutz, B., Hampton, C., Matusovich, H. M., & Lee, W. C. (2016). Exploring student motivation towards diversity education in engineering. 2016 IEEE Frontiers in Education Conference (FIE), 1–5. https://doi.org/10.1109/FIE.2016.7757565

Published

2023-07-28 — Updated on 2023-05-10

Versions

How to Cite

Zea-Ramirez, H. R. (2023). 21st century engineering education challenges. COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES, 1(41), 42–49. https://doi.org/10.24054/rcta.v1i41.2416 (Original work published July 28, 2023)