EVALUACIÓN DE LA CALIDAD DEL PAPEL RECICLADO POR DESCRIPTORES DE TEXTURAS
DOI:
https://doi.org/10.24054/rcta.v1i21.1894Palabras clave:
Análisis de texturas, calidad del papel, reconocimiento de patronesResumen
En el proceso de inspección de calidad del papel reciclado, un defecto que se aprecia ocasionalmente es la aparición de ondulaciones en las hojas de papel a escala macroscópica, lo cual puede surgir algún tiempo después de su fabricación. Se ha
denominado a dicho fenómeno abollado. En este trabajo se explora la detección y medida de dicho fenómeno mediante técnicas de tratamiento de imágenes, específicamente análisis de texturas combinadas con métodos de reconocimiento de patrones.
Descargas
Citas
Ahmed Abouelelaa, Hazem M. Abbasb, Hesham
Eldeeba, Abdelmonem A. Wahdanb, and
Salwa M. Nassara. Automated vision system
for localizing structural defects in textile
fabrics. Pattern Recognition Letters, 26:1435–
, 2004.
Calderon-Martinez P., J.A.; Campoy-Cervera. A
convolutional neural architecture: an
application for defects detection in continuous
manufacturing systems. Circuits and Systems,
ISCAS ’03. Proceedings of the 2003
International Symposium on, 5:V–749–V–
vol.5, 25-28 May 2003.
Concia Aura and Claudia Belmiro Proença. A
fractal image analysis system for fabric
inspection based on a box-counting method.
Computer Networks and ISDN Systems,
:1887–1895, 1999.
Considine J.M, C.T. Scott, R. Gleisner, and J.Y.
Zhu. Use of digital image correlation to study
the local deformation field of paper and
paperboard. In 13th Fundamental Research
Symposium Conference, pages 613–630,
Duda R. O., P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley Interscience, 2001.
Funck J. W, Y. Zhong, D. A. Butler, C. C.
Brunner, and J. B. Forrer. Image
segmentation algorithms applied to wood
defect detection. Computers and Electronics
in Agriculture, 41:157–179, 2003.
Gabor D. Theory of communication. J. Inst. Electr.
Eng., 93:429–457, 1946.
Grigorescu, Simona E., Nicolai Petkov, and Peter
Kruizinga. Comparison of texture features
based on gabor filters. Image Processing,
IEEE Transactions on, 11:1160_1167, 2002.
Henry Y.T. Ngana, Grantham K.H. Panga, S.P.
Yungb, and Michael K. Ngb. Wavelet based
methods on patterned fabric defect detection.
Pattern Recognition, 38:559–576, 2005.
Ian H. Witten and Eibe Frank. Data Mining:
Practical machine learning tools and
techniques", 2nd Edition. 2005.
Mallat, Stephane G.. A theory for multiresolution
signal decomposition: The wavelet
representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2:674–
, 1989.
Martinez-Alajarin J, J.D. Luis-Delgado, and L.M.
Tomas-Balibrea. Automatic system for
quality-based classification of marble
textures. Systems, Man and Cybernetics, Part
C: Applications and Reviews, IEEE
Transactions on, 35(4):488–497, Nov. 2005.
Panchanathan J. Jr; S. Fahmy, G.; Black. Texture
characterization for joint compression and
classification based on human perception in
the wavelet domain. Image Processing, IEEE
Transactions on, 15(6):1389– 1396, June
Sadonikov A, P. Salmela, L. Lensu, J.-K.
Kamarainen, and H. Kälviäinen. Mottling
assessment of solid printed areas and its
correlation to perceived uniformity. In In
Proc. of the 14th Scandinavian Conf. of
Image Processing (Joensuu, Finland), 1995.
Sari-Sarraf J.S. Jr, H.; Goddard. Vision system for
on-loom fabric inspection. Industry
Applications, IEEE Transactions on,
(6):1252–1259, Nov/Dec 1999.
Descargas
Publicado
Versiones
- 2013-01-02 (4)
- 2013-01-02 (3)
- 2013-01-02 (2)
- 2022-11-08 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2013 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.