Algoritmos LMS de filtrado adaptativo para cancelación de eco acústico en sistemas de telecomunicaciones
DOI:
https://doi.org/10.24054/rcta.v1i23.1876Palabras clave:
Cancelador de eco acústico, lgoritmo de mínimos cuadrados promediados LMS, filtros adaptablesResumen
Este trabajo se centra en el estudio y la comparación de las características de modelado, simulación y desempeño de filtros adaptativos LMS utilizados para aplicaciones de cancelación de eco. En ese sentido, tres algoritmos de filtrado adaptativo convencionales se revisan, el algoritmo de Mínimos Cuadrados Promediados Convencional (LMS), el algoritmo LMS Normalizado (NLMS) y el algoritmo LMS signado (SLMS). Por último, la comparación entre los algoritmos se evaluó mediante índices de desempeño tales como respuesta temporal, velocidad de convergencia y análisis espectral ERLE.
Descargas
Citas
Adali, T. and Haykin, S. (2010). Adaptive and Learning Systems for Signal Processing, Communications, and Control, John Wiley & Sons.
Asjadi, H. and Ababafha, M. (1997). “Adaptive Echo Cancellation Based On Third Order Cumulant, International Conference on Information, Communications and Signal Processing, ICICS '97 Singapore, Sept. 1997.
Bellanger, M. (2001). Adaptive Digital Filters and Signal Analysis, Marcel Deckr, New York 2nd Edition.
Breining, C., Dreiseitel, P., Hansler, E., Mader, A., Nitsch, B., Puder, H., Schertler, T., Schmidt, G., and Tilp, J. (1999). “Acoustic Echo Control”. IEEE Signal Proc. Magazine, 16, 42 – 69.
Cuenca, D. y Muñoz. A. (2005). Control Activo de Ruido. Universidad de Costa Rica.
Diniz, P. S. (2008). Adaptive Filtering: Algorithms and Practical Implementation. 3rd edition Springer, New York, NY, USA.
Duttweiler, D. L., (2000). “Proportionate normalized least mean square adaptation in echo cancellers”, IEEE Transactions on Speech and Audio Processing, Vol. 8, pp. 508–518, Sept. 2000.
Duttweiler, D.L. (2000). “Proportionate Normalized Least Mean Square Adaptation in Echo Cancellers,” IEEE Trans. Speech Audio Processing, vol. 8, pp. 508-518, Sept. 2000.
Eneman, K. and Moonen, M. (2003). “Iterated partitioned block frequency-domain adaptive filtering for acoustic echo cancellation,” IEEE Transactions on Speech and Audio Processing, vol. 11, pp. 143-158, Mar. 2003.
Gay, S. L. and Benesty, J. (2000). Acoustic Signal Processing for Telecommunication. Kluwer Academic Publishers, Boston, MA.
Haykin, S. (2013). Adaptive Filter Theory, Pearson Education, Prentice Hall. 5th Edition.
Jamel, T. (2013). “Performance Enhancement of Adaptive Acoustic Echo Canceller Using a New Time Varying Step Size LMS Algorithm (NVSSLMS)”. International Journal of Advancements in Computing Technology (IJACT), Korea , Vol. 3, No. 1, Jan. 2013.
Krishna, E.H.; Raghuram, M.; Madhav, K.V and Reddy, K.A. (2010). “Acoustic echo cancellation using a computationally efficient transform domain LMS adaptive filter,” 2010 10th International Conference on Information sciences signal processing and their applications (ISSPA), pp. 409-412, May. 2010.
Kuch, F. (2005). Adaptive Polynomial Filters and their Application to Nonlinear Acoustic Echo Cancellation. PhD thesis, Der Technischen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg, Germany.
Lankila, A. (2008). Simulation Model for an Active Noise Control System - Development and Validation. Helsinki University Of Technology. Espoo.
Makino, S., Kaneda, Y. and Koizumi, N. (1993). “Exponentially weighted step size NLMS adaptive filter based on the statistics of a room impulse response”, IEEE Trans. on speech and audio Processing, vol. 1, No.1, pp.101-108, Jan 1993.
Manikandan, S. Mythili, S. (2006). Improved active noise feedforward control systems using delta rule algorithm. Dept of ECE, KSR College of Tech, ANNA University, Tamilnadu, India. ISSN 1311-4360. Volume 19., 2006.
Meler, L. (2005). Variantes del Algoritmo LMS. Aplicación a un Sistema Cancelador de Ecos. Escuela Universitaria Politécnica de Teruel. Universidad de Zaragoza.
Muñoz, E.A. y Tapia, X. A. (2007). Diseño e Implementación de un Sistema de Reducción del Ruido Industrial en la Comunicación entre Operadores. Escuela Politécnica Nacional.
Olivares, A. P. (2001). Desarrollo de un Prototipo de Control Activo de Ruido Utilizando el DSP de Punto Flotante TMS320C31. Instituto Tecnológico y de estudios superiores de Monterrey.
Paleologu, C.; Benesty, J.; Grant, S.L. and Osterwise, C. (2009). “Variable step-size NLMS algorithms for echo cancellation” Conference Record of the forty-third Asilomar Conference on Signals, Systems and Computers, pp. 633-637, Nov 2009.
Per Ahgren, (2004). An environment for real time laboratory exercises in acoustic echo cancellation, Ph.D. Dissertation, Department of systems and control, Uppsala University, Uppsala, Sweden.
Poularikas, D. and Ramadan, Z. (2006). Adaptive Filtering Primer with MATLAB, CRC Press.
Sayed, A. (2008). Adaptive Filters, John Wiley & Sons.
Stearns, S. D. and Widrow, B. (1985) Adaptive Signal Processing, Prentice-Hall, Inc. Englewood Cliffs, N.J, 1985.
Velazquez, J., Sanchez, J. y Perez, H. (2006). “Adaptive filters with codified error LMS Algorithm”, International Journal Electromagnetic Waves and Electronic Systems, Vol. 1, pp. 23 – 28, Jul. 2006.
Widrow, B. and Hoff, M. E. (1960). Adaptive Switching Circuits, IRE Wescon Conv.Rec., pt. 4, pp. 96 – 104.
Zhao, H.; Hu, S.; Li, L. and Wan, X. (2013). “NLMS Adaptive FIR Filter Design Method”, 2013 IEEE Region 10 Conference TENCON, pp. 1- 5.
Zhao, L., Hu, S., Li, L. and Wan, X. (2013). “Implementation of Recursive Least Squares (SLMS) Adaptive Filter for Noise Cancellation”. International Journal of Scientific Engineering and Technology. Vol. No.1, Issue No.4, pp. 46-48.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2014 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.