This is an outdated version published on 2025-04-27. Read the most recent version.

Incidence of global climate change on extreme values of the main climatic variables in the Guánica - La Rusia páramo

Incidence of global climate change on extreme values of the main climatic variables in the Guánica - La Rusia páramo

Authors

DOI:

https://doi.org/10.24054/raaas.v16i1.3741

Keywords:

Paramo, Climate change, Climate variability, Extreme temperatures

Abstract

The paramos are unique ecosystems in the northern region of South America, characterized by their vast natural wealth and biodiversity. In part. These are made possible by climatic variability that can be affected by the phenomenon of climate change. This study investigates the impact of climate change on the regional climate in the Guantiva – La Rusia páramo through statistical analysis of parametric tests. It was identified that maximum temperatures trend to increase with a gradient of up to 0.8 °C/10 years and monthly precipitation in the rainy months increases by up to 20 mm/10 years, while their variables did not confirm pattern of change. The changes in the identified climatic patterns can cause changes in the thermal floors of the paramo, and modification of natural vegetation covers together with the anthropic transformations present in the territory.

Downloads

Download data is not yet available.

References

Araujo, J., & Molina, Y. (2021). Monitoreo del proceso de afectación del páramo andino venezolano a través de un análisis multitemporal. REVISTA GEOGRÁFICA VENEZOLANA, 62(2), 298–314. https://doi.org/10.53766/RGV/2021.62.02.01

CAS, Cc. A. R. de S. (2024, mayo 6). Hallazgos en Páramo Guantiva la Rusia. https://cas.gov.co/prensa/hallazgos-en-paramo-guantiva-la-rusia-corporacion-autonoma-regional-de-santander/

Corpoboyaca. (2015). Estudios técnicos, económicos, sociales y ambientales para la identificación y delimitación del complejo Guantiva-La Rusia a escala 1:25.000. Tunja.

Diazgranados, M., Tovar, C., Etherington, T. R., Rodríguez-Zorro, P. A., Castellanos-Castro, C., Rueda, M. G., & Flantua, S. G. A. (2021). Ecosystem services show variable responses to future climate conditions in the Colombian páramos. PeerJ, 9, e11370. https://doi.org/10.7717/PEERJ.11370/SUPP-8

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222(594–604), 309–368. https://doi.org/10.1098/RSTA.1922.0009

Hofstede, R., Calles, J., López, V., Polanco, R., Torres, F., Ulloa, J., Vásquez, A., & Cerra, M. (2014). Los páramos andinos ¿Qué sabemos? estado de conocimiento sobre el impacto del cambio climático en el ecosistema páramo - resource IUCN. https://iucn.org/node/40135

IAvH. (2020). Páramos y sistemas de vida Rabanal. Investigación en biodiversidad y servicios ecosistémicos para la toma de decisiones. http://www.humboldt.org.co/es/i2d/item/559-paramos-y-sistemas-de-vida-rabanal

IAvH. (2024, julio 4). Átlas de páramos de Colombia. https://repository.humboldt.org.co/bitstreams/b54d39f4-7a18-4fde-881c-d53723791f01/download

IDEAM. (2024, marzo 9). Catálogo Estaciones IDEAM. https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/Catalogo-Estaciones-IDEAM/n6vw-vkfe

Kordun, O., & Makhinko, A. (2024). The Influence of Global Warming on the Change of Climatic Loads on the Territory of Ukraine. Lecture Notes in Civil Engineering, 615 LNCE, 83–93. https://doi.org/10.1007/978-3-031-73776-3_6

Li, W., Zhang, H., Xin, Q., Gu, X., Ma, H., Cao, H., Bao, Z., Ye, L., & Huai, X. (2024). Analysis of Extreme Precipitation under Nonstationary Conditions in the Yangtze River Basin. Journal of Hydrologic Engineering, 30(1), 05024025. https://doi.org/10.1061/JHYEFF.HEENG-6134

Liu, R., Kou, X., Song, W., & Dong, C. (2024). Evolution Laws and Spatial Differentiation Characteristics of Climate and Extreme Climate Before and After the Impoundment of the Three Gorges Reservoir. Lecture Notes in Civil Engineering, 487 LNCE, 476–488. https://doi.org/10.1007/978-981-97-9184-2_39/FIGURES/9

Murad, C. A., Pearse, J., & Huguet, C. (2024). Multitemporal monitoring of paramos as critical water sources in Central Colombia. Scientific Reports 2024 14:1, 14(1), 1–21. https://doi.org/10.1038/s41598-024-67563-z

Olaya-Angarita, J. A., Díaz-Pérez, C. N., & Morales-Puentes, M. E. (2019). Composition and structure of the forest-páramo transition in the guantiva-la rusia corridor (Colombia). Revista de Biologia Tropical, 67(4), 755–768. https://doi.org/10.15517/RBT.V67I4.31965

Peyre, G., Osorio, D., François, R., & Anthelme, F. (2021). Mapping the páramo land-cover in the Northern Andes. International Journal of Remote Sensing, 42(20), 7777–7797. https://doi.org/10.1080/01431161.2021.1964709

Picornell, A., Caspersen, L., & Luedeling, E. (2025). The influence of calibration data diversity on the performance of temperature-based spring phenology models for forest tree species in Central Europe. Agricultural and Forest Meteorology, 360, 110302. https://doi.org/10.1016/J.AGRFORMET.2024.110302

Renjifo, L. M., Gómez, M. F., Velásquez-Tibatá, J., Amaya-Villarreal, Á. M., Kattan, G. H., Amaya-Espinel, J. D., & Jaime, B.-G. (2014). Libro rojo de Aves de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Researchgate.Net, 466. http://www.researchgate.net/profile/Luis_Renjifo/publication/261992711_Libro_rojo_de_las_aves_de_Colombia_Volumen_1_bosques_hmedos_de_los_Andes_y_la_costa_pacfica/links/555cfd3008ae8c0cab2a6acc.pdf

Ruiz, D., Martinson, D. G., & Vergara, W. (2012). Trends, stability and stress in the Colombian Central Andes. Climatic Change, 112(3–4), 717–732. https://doi.org/10.1007/S10584-011-0228-0

Schlattmann, A., Neuendorf, F., Burkhard, K., Probst, E., Pujades, E., Mauser, W., Attinger, S., & von Haaren, C. (2022). Ecological Sustainability Assessment of Water Distribution for the Maintenance of Ecosystems, their Services and Biodiversity. Environmental Management, 70(2), 329–349. https://doi.org/10.1007/S00267-022-01662-3/FIGURES/8

Silva, E. H., Miranda, I. S., Salinas, L. I. F., & Gonzalez-Mendoza, M. (2024). Building Resilience Against Climate Change. Focusing on Predicting Precipitation with Machine Learning Models on Mexico’s Metropolitan Area. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 15246 LNAI, 68–80. https://doi.org/10.1007/978-3-031-75540-8_6

Student. (1908). The Probable Error of a Mean. Biometrika, 6(1), 1. https://doi.org/10.2307/2331554

Su, H., Du, M., Liu, Q., Kang, X., Zhao, L., Zheng, W., & Liao, Z. (2024). Assessment of regional Ecosystem Service Bundles coupling climate and land use changes. Ecological Indicators, 169, 112844. https://doi.org/10.1016/J.ECOLIND.2024.112844

Suescún, D., León, J. D., Villegas, J. C., & Correa-Londoño, G. A. (2023). Nutrient loss to erosion responds to rain characteristics under transformed landscapes in the Río Grande basin, Colombian Andes. Ecohydrology, 16(3), e2519. https://doi.org/10.1002/ECO.2519

Waqas, M., Naseem, A., Humphries, U. W., Hlaing, P. T., Shoaib, M., & Hashim, S. (2025). A comprehensive review of the impacts of climate change on agriculture in Thailand. Farming System, 3(1), 100114. https://doi.org/10.1016/J.FARSYS.2024.100114

Wu, S., Hu, F., & Zhang, Z. (2024). Climate change and energy poverty: Evidence from China. World Development, 186, 106826. https://doi.org/10.1016/J.WORLDDEV.2024.106826

Zhang, Y., Liu, X., Patouillard, L., Margni, M., Bulle, C., & Yuan, Z. (2024). Where coal is produced really matters the environmental impacts. Resources, Conservation and Recycling, 212, 107987. https://doi.org/10.1016/J.RESCONREC.2024.107987

Published

2025-04-27

Versions

How to Cite

Ivanova, Y., Castellanos Gutiérrez, J. D., & García Mora, M. A. (2025). Incidence of global climate change on extreme values of the main climatic variables in the Guánica - La Rusia páramo: Incidence of global climate change on extreme values of the main climatic variables in the Guánica - La Rusia páramo. REVISTA AMBIENTAL AGUA, AIRE Y SUELO, 16(1), 77–92. https://doi.org/10.24054/raaas.v16i1.3741