INFLUENCE OF FATTY ACIDS OF PORK LARD AND CHICKEN ANIMAL OILS ON BIODIESEL PRODUCTION
DOI:
https://doi.org/10.24054/raaas.v14i2.2785Keywords:
Animal fats, Biodiesel, Fatty acids, FAMEAbstract
Fatty acids are derived from various animal and vegetable oils, with this being the primary reactant for biodiesel production, representing approximately 80% of its commercial cost. Additionally, a short-chain alcohol such as ethanol and methanol is required, along with catalysts to facilitate the transesterification reaction, resulting in the formation of esters (biodiesel). Fatty acids vary depending on their origin, commonly in chains of twelve to twenty carbons, with palmitic acid (C16) and oleic acids (C18) being the predominant ones. Some fatty acids exhibit a higher affinity for the alcohol in the reaction, dependent on various parameters such as agitation, heating, and the contact between these two immiscible substances during the reaction. This study presents the production, characterization, and affinity of biodiesel produced from two animal-based raw materials using a molar ratio of methanol to oil of 6:1 and potassium hydroxide (KOH) as a 1.5% catalyst. Biodiesel characterization follows the UNE-EN 14214 standards, determining FAME (Fatty Acid Methyl Esters) through gas chromatography, as well as density, viscosity, and calorific value for each selected raw material.
Downloads
References
Astm, D. (2012). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM International, West Conshohocken.
Berrios, M., Gutierrez, M. C., Martin, M. A., & Martin, A. (2010). Obtaining biodiesel from spanish used frying oil: Issues in meeting the EN 14214 biodiesel standard. biomass and bioenergy, 34(3), 312-318. DOI: https://doi.org/10.1016/j.biombioe.2009.11.002
Burton, R. (2008). An overview of ASTM D6751: biodiesel standards and testing methods. Alternative fuels consortium.
Chuah, L. F., Yusup, S., Abd Aziz, A. R., Bokhari, A., & Abdullah, M. Z. (2016). Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor. Journal of Cleaner Production, 112, 4505-4514. DOI: https://doi.org/10.1016/j.jclepro.2015.06.112
Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in energy and combustion science, 31(5-6), 466-487. DOI: https://doi.org/10.1016/j.pecs.2005.09.001
Dogan, T. H. (2016). The testing of the effects of cooking conditions on the quality of biodiesel produced from waste cooking oils. Renewable Energy, 94, 466-473. DOI: https://doi.org/10.1016/j.renene.2016.03.088
Gaspar-Cota, S., Ruelas-Ayala, R. D., Estrada, C. S. C., Apodaca, J. R. R., & Félix-Herrán, J. A. CAPÍTULO IX PERSPECTIVA DEL USO DE BIODIESEL DE LOS PRODUCTORES AGRÍCOLAS EN LA COMUNIDAD EL CARRIZO, SINALOA, MÉXICO.
Gebremariam, S. N., & Marchetti, J. M. (2018). Economics of biodiesel production. Energy Conversion and Management, 168, 74-84. DOI: https://doi.org/10.1016/j.enconman.2018.05.002
Giakoumis, E. G., & Sarakatsanis, C. K. (2018). Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel, 222, 574-585. DOI: https://doi.org/10.1016/j.fuel.2018.02.187
Graboski, M. S., & McCormick, R. L. (1998). Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in energy and combustion science, 24(2), 125-164. DOI: https://doi.org/10.1016/S0360-1285(97)00034-8
Gutiérrez de Piñeres, J. A., Orozco, J. E., Mejía, W. A. y Briceño, A. F. (2022). Análisis de la eficacia de tapas plásticas como lecho filtrante en humedales para aguas residuales. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(1). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2720/3793 DOI: https://doi.org/10.24054/raaas.v13i1.2720
Hansen, A. C., Kyritsis, D. C., & Lee, C. F. F. (2010). Characteristics of biofuels and renewable fuel standards. Biomass to biofuels: strategies for global industries, 1-26. DOI: https://doi.org/10.1002/9780470750025.ch1
Holden, E., & Gilpin, G. (2013). Biofuels and sustainable transport: A conceptual discussion. Sustainability, 5(7), 3129-3149. DOI: https://doi.org/10.3390/su5073129
Lascarro, N. F., Manco, J. D. y Rojas, M. E. (2022). Rol de los procesos sedimentarios en la generación de hidrocarburos en la formación la luna. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(2). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2724/3797
Manco-Jaraba, D. C., Navarro-Becerra, Y., Rojas-Martínez, E. y Mindiola-Gil, R. (2022). Manantial de cañaverales: una estrategia novedosa para el desarrollo socioeconómico del sur de La Guajira (Colombia), a través de la geoeducación, geoturismo y geoconservación. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(1). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2718/3791
Sáez-Bastante, J., Carmona-Cabello, M., Pinzi, S., & Dorado, M. P. (2020). Recycling of kebab restoration grease for bioenergy production through acoustic cavitation. Renewable Energy, 155, 1147-1155. DOI: https://doi.org/10.1016/j.renene.2020.04.045
Shrinivasa, T. (2012). Rudolf Diesel—The rational inventor of a heat engine. Resonance-Heidelberg, 17(4), 319. DOI: https://doi.org/10.1007/s12045-012-0033-8
Sia, C. B., Kansedo, J., Tan, Y. H., & Lee, K. T. (2020). Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatalysis and Agricultural Biotechnology, 24, 101514. DOI: https://doi.org/10.1016/j.bcab.2020.101514
Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, A., Hosseini, M., & Soufiyan, M. M. (2019). Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 239-303. DOI: https://doi.org/10.1016/j.pecs.2019.06.001
Van de Graaf, T., & Verbruggen, A. (2015). The oil endgame: Strategies of oil exporters in a carbon-constrained world. Environmental Science & Policy, 54, 456-462. DOI: https://doi.org/10.1016/j.envsci.2015.08.004
Vera-Rozo, J. R., Sáez-Bastante, J., Carmona-Cabello, M., Riesco-Avila, J. M., Avellaneda, F., Pinzi, S., & Dorado, M. P. (2022). Cetane index prediction based on biodiesel distillation curve. Fuel, 321, 124063. DOI: https://doi.org/10.1016/j.fuel.2022.124063
Zuluaga, A., Durán-Cepeda, J. M. y García, J. M. (2022). Gestión prospectiva–sostenible de desarrollo económico–social para San Juan del Cesar – La Guajira al 2027. Revista Ambiental Agua, Aire y Suelo (RAAAS), 13(2). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2731/3802 DOI: https://doi.org/10.24054/raaas.v13i2.2731
Downloads
Published
Versions
- 2023-11-15 (6)
- 2023-12-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.