Implementación y simulación de un algoritmo de posicionamiento articular para un robot planar continuo utilizando técnicas de inteligencia artificial

Autores/as

  • Andrés Ricardo Castillo Universidad Militar Nueva Granada
  • Fabián Camilo Castro Universidad Militar Nueva Granada
  • Joseph Jonás Vogulys Universidad Militar Nueva Granada

DOI:

https://doi.org/10.24054/rcta.v3iEspecial.859

Palabras clave:

Inteligencia Artificial, Robot Continuo, Hiperrrebundancia

Resumen

En este trabajo se muestra la implementación de un algoritmo de Inteligencia Artificial  para  posicionar las articulaciones de un robot planar tipo continuo hiperrebundate para que el robot puede  generar una curvatura  y tenga la habilidad de  esquivar obstáculo dinámicos. Este trabajo se desarrolló con el framework ROS  y  se simulo sobre una plataforma virtual de un entorno para robótica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Cecilia. (Junio 2017). DESARROLLO DE UN ROBOT MANIPULADOR BLANDO E HÍPER-REDUNDANTE. PhD Escuela Técnica Superior de Ingenieros Industriales. Universidad Politécnica de Madrid.

Kapadia, A. D., Walker, I. D., Dawson, D. M., and Tatlicioglu, E. A model-based sliding mode controller for extensible continuum robots. In Proceedings of the 9th WSEAS International Conference on Signal Processing, Robotics and Automation, IEEE, 11(6), 45-52. Stevens

Gokhale, D. P. Kinematic analysis and animation of a variable geometry truss robot. PhD thesis, Virginia Tech, 1987.

Barrio, A. M., Terrile, S., Barrientos, A., and del Cerro, J. Robots hiper-redundantes: Clasificación, estado del arte y problemática. Revista Iberoamericana de Automática e Informática industrial 15, 4 (2018), 351-362.

Mishra, A., Mondini, A., Del Dottore, E., Sadeghi, A., Tramacere, F., and Mazzolai, B. Modular continuum manipulator: analysis and characterization of its basic module. Biomimetics 3, 1 (2018), 3

Zhao, L., Xiao, Q., Cao, Z., Huang, R., and Fu, Y. daptive neural network tracking control of snake-like robots via a deterministic learning approach. Revista n 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) (Dec 2017), pp. 2710-2715.

León, J. F. Estudio de neuro-controladores evolutivos para navegación de robots autónomos. Master of Systems Engineering, UNCPBA, Argentina (2005).

Wu, X., and Ma, S. Cpg-based control of serpentine locomotion of a snake-like robot. Mechatronics 20, 2 (2010), 326-334

Brockett, R. W obotic manipulators and the product of exponentials formula. In Mathematical theory of networks and systems.(1984), Springer, pp. 120-129.

Walker, I. D. Continuous backbone continuum robot manipula- tors. Isrn robotics 2013 (2013).

Transeth, A., Leine, R., Glocker, C., and Pettersen, K. 3-D Snake Robot Motion: Nonsmooth Modeling, Simulations, and Experiments. IEEE Transactions on Robotics 24, 2 (Apr. 2008), 361?376.

Crespi, A., Badertscher, A., Guignard, A., and Ijspeert, A. J. Amphibot i: an amphibious snake-like robot. Robotics and Autonomous Systems 50, 4 (2005), 163-175.

Chollet, F. Deep Learning mit Python und Keras: Das Praxis- Handbuch vom Entwickler der Keras-Bibliothek. MITP- Verlags GmbH and Co. KG, 2018.

Banik, M. S., and Couvillon Jr, L. A. Robotic endoscope with wireless interface, Aug. 3 2004. US Patent 6,770,027.

Kitamura, S., and Oka, K. Recognition and cutting system of sweet pepper for picking robot in greenhouse horticulture. In IEEE International Conference Mechatronics and Automation, 2005 (2005), vol. 4, IEEE, pp. 1807?1812.

Singer, P. W. Military robots and the laws of war. The New Atlantis, 23 (2009), 25?45.

Garcia, A., Gonzalez, I., Colomo-Palacios, R., Lopez, J. L., and Ruiz, B. Methodology for software development estimation optimization based on neural networks. IEEE Latin America Transactions 9, 3 (2011), 384?398.

Florez Vergara, D. E., Castro Riveros, F. C., and Castillo Estepa, R. A. Planeacion y ejecucion de trayectorias en un robot Delta. Scientia et technica 22, 2 (June 2017), 186.

Guo, Y., Kang, R., Chen, L., and Dai, J. Dynamic modeling for a continuum robot with compliant structure. In ASME 2015 In- ternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2015), American Society of Mechanical Engineers Digital Collection.

Amari, S.-i. Backpropagation and stochastic gradient descent method. Neurocomputing 5, 4-5 (1993), 185?196.

Descargas

Publicado

2021-04-13 — Actualizado el 2020-08-14

Cómo citar

[1]
A. R. Castillo, F. C. Castro, y J. J. Vogulys, «Implementación y simulación de un algoritmo de posicionamiento articular para un robot planar continuo utilizando técnicas de inteligencia artificial», RCTA, vol. 3, n.º 2, pp. 87–94, ago. 2020.

Número

Sección

Artículos