Analysis and implementation of clustering in dengue cases using unsupervised learning algorithm

Authors

DOI:

https://doi.org/10.24054/rcta.v2i44.3021

Keywords:

Unsupervised Learning, Clustering, Dengue, Segmentation

Abstract

This study focuses on the application of unsupervised learning algorithms, specifically clustering techniques, to analyze the incidence of dengue in San Juan, Puerto Rico, and Iquitos, Peru. The main objective is to evaluate the effectiveness of these algorithms in identifying hidden patterns in the data set, composed of environmental, climatic information and dengue cases. The research allowed us to verify the importance of selecting the appropriate clustering technique, evidenced by the variable performance of the methods used. The results reveal the usefulness of unsupervised learning for understanding the spread of dengue, highlighting the need to carefully consider the choice of algorithm for future epidemiological and environmental analyses.

Downloads

Download data is not yet available.

References

J. Quddus, Machine Learning with Apache Spark Quick Start Guide: Uncover Patterns, Derive Actionable Insights, and Learn from Big Data Using MLlib. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2018. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5626693

J. Bell, Machine Learning: Hands-On for Developers and Technical Professionals. Somerset, UNITED STATES: John Wiley & Sons, Incorporated, 2014. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=1818248 DOI: https://doi.org/10.1002/9781119183464

U. N. Dulhare, K. Ahmad, and K. A. Bin Ahmad, Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications. Newark, UNITED STATES: John Wiley & Sons, Incorporated, 2020. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=6268187 DOI: https://doi.org/10.1002/9781119654834

R. Gopalakrishnan and A. Venkateswarlu, Machine Learning for Mobile: Practical Guide to Building Intelligent Mobile Applications Powered by Machine Learning. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2018. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5628277

R. Karim, Machine Learning with Scala Quick Start Guide: Leverage Popular Machine Learning Algorithms and Techniques and Implement Them in Scala. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2019. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5764277

M. A. Jabbar, Machine Learning Methods for Signal, Image and Speech Processing. Aalborg, DENMARK: River Publishers, 2021. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=29002971 DOI: https://doi.org/10.1201/9781003338789

O. Campesato, Artificial Intelligence, Machine Learning, and Deep Learning. Bloomfield, UNITED STATES: Mercury Learning & Information, 2020. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=6032875 DOI: https://doi.org/10.1515/9781683924654

W.-M. Lee, Python Machine Learning. Newark, UNITED STATES: John Wiley & Sons, Incorporated, 2019. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5747364 DOI: https://doi.org/10.1002/9781119557500

Z. Nagy, Artificial Intelligence and Machine Learning Fundamentals: Develop Real-World Applications Powered by the Latest AI Advances. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2018. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5620491

E. Jurczenko, Machine Learning for Asset Management: New Developments and Financial Applications. Newark, UNITED STATES: John Wiley & Sons, Incorporated, 2020. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=6268186 DOI: https://doi.org/10.1002/9781119751182

G. Kyriakides and K. G. Margaritis, Hands-On Ensemble Learning with Python: Build Highly Optimized Ensemble Machine Learning Models Using Scikit-Learn and Keras. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2019. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5837325

K. Ramasubramanian and J. Moolayil, Applied Supervised Learning with R: Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2019. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5784240

H. Gutierrez-Barbosa, S. Medina-Moreno, J. C. Zapata, and J. V Chua, "Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country," Trop Med Infect Dis, Vol. 5, No. 4, 2020, DOI: 10.3390/tropicalmed5040156. DOI: https://doi.org/10.3390/tropicalmed5040156

R. Gangula, L. Thirupathi, R. Parupati, K. Sreeveda, and S. Gattoju, "Ensemble machine learning based prediction of dengue disease with performance and accuracy elevation patterns," Mater Today Proc, vol. 80, pp. 3458–3463, 2023, doi: https://doi.org/10.1016/j.matpr.2021.07.270. DOI: https://doi.org/10.1016/j.matpr.2021.07.270

S. Mehrotra and A. Grade, Apache Spark Quick Start Guide: Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2019. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=5675596

S. Maldonado, Analytics and Big Data: Data Science applied to the business world. RIL editors, 2022. [Online]. Available: https://elibro.net/es/lc/biblioupc/titulos/225562

E. Alogogianni and M. Virvou, "Addressing the issue of undeclared work – Part I: Applying associative classification per the CRISP-DM methodology," Intelligent decision technologies, vol. 15, no. 4, pp. 721–747, 2021. DOI: https://doi.org/10.3233/IDT-210213

W. Y. Ayele, "Adapting CRISP-DM for Idea Mining: A Data Mining Process for Generating Ideas Using a Textual Dataset," International Journal of Advanced Computer Science and Applications, Vol. 11, No. 6, 2020, doi: https://doi.org/10.14569/IJACSA.2020.0110603. DOI: https://doi.org/10.14569/IJACSA.2020.0110603

J. A. Castillo Romero, Big data. IFCT128PO. IC Editorial, 2019. [Online]. Available: https://elibro.net/es/lc/biblioupc/titulos/124254

A. So, T. V. Joseph, R. Thas John, A. Worsley, and S. Asare, The Data Science Workshop: A New, Interactive Approach to Learning Data Science. Birmingham, UNITED KINGDOM: Packt Publishing, Limited, 2020. [Online]. Available: http://ebookcentral.proquest.com/lib/universidadviu/detail.action?docID=6033288

H. Wiemer, L. Drowatzky, and S. Ihlenfeldt, "Data Mining Methodology for Engineering Applications (DMME)—A Holistic Extension to the CRISP-DM Model," Applied Sciences, Vol. 9, No. 12, 2019, doi: https://doi.org/10.3390/app9122407. DOI: https://doi.org/10.3390/app9122407

M. T. H. Suhendar and Y. Widyani, "Machine Learning Application Development Guidelines Using CRISP-DM and Scrum Concept," in 2023 IEEE International Conference on Data and Software Engineering (ICoDSE), 2023, pp. 168–173. doi: 10.1109/ICoDSE59534.2023.10291438. DOI: https://doi.org/10.1109/ICoDSE59534.2023.10291438

A. Cheng, "Evaluating Fintech industry's risks: A preliminary analysis based on CRISP-DM framework," Financ Res Lett, vol. 55, p. 103966, 2023, doi: https://doi.org/10.1016/j.frl.2023.103966. DOI: https://doi.org/10.1016/j.frl.2023.103966

C. Schröer, F. Kruse, and J. M. Gómez, "A Systematic Literature Review on Applying CRISP-DM Process Model," Procedia Comput Sci, vol. 181, pp. 526–534, 2021, doi: https://doi.org/10.1016/j.procs.2021.01.199. DOI: https://doi.org/10.1016/j.procs.2021.01.199

V. Plotnikova, M. Dumas, and F. P. Milani, "Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements," Data Knowl Eng, vol. 139, p. 102013, 2022, doi: https://doi.org/10.1016/j.datak.2022.102013. DOI: https://doi.org/10.1016/j.datak.2022.102013

Published

2024-07-25

How to Cite

[1]
M. A. Rincón Pinzón, C. A. Mejía Rodríguez, E. A. Ramírez Camargo, and L. M. Arévalo Vergel, “Analysis and implementation of clustering in dengue cases using unsupervised learning algorithm”, RCTA, vol. 2, no. 44, pp. 104–111, Jul. 2024.

Most read articles by the same author(s)