Desarrollo de una red neuronal convolucional para la detección del cáncer de mama mediante la clasificación de imágenes mamográficas
DOI:
https://doi.org/10.24054/rcta.v1i39.1378Palabras clave:
Inteligencia artificial, aprendizaje profundo, red neuronal convolucional, transferencia de aprendizaje, clasificación de imágenes, cáncer de mama, detección tempranaResumen
La inteligencia artificial (IA) ha venido creciendo durante los últimos años en el área de la salud con el desarrollo de sistemas de apoyo a la toma de decisiones clínicas. Con este trabajo se logró desarrollar un algoritmo de aprendizaje profundo capaz de clasificar imágenes mamográficas en cinco categorías (normal, microcalcificación benigna, nódulo benigno, microcalcificación maligna y nódulo maligno) con un enfoque prioritario en la detección temprana del cáncer de mama, aplicando la técnica de transferencia de aprendizaje. Se usaron los conjuntos de datos DDSM y CBIS-DDSM, disponibles en la web, para el entrenamiento y validación de la red neuronal convolucional obteniendo un AUC del 0.9838 y 0.9773 respectivamente. Estos resultados demuestran el gran potencial que la IA trae para el área de la salud, y los beneficios que genera en esta y otras patologías al reducir el porcentaje de falsos positivos y falsos negativos que son elementos importantes en el diagnóstico.
Descargas
Citas
Ahmad, A. M., Muhammad Khan, G., & Mahmud, S. A. (2014). Classification of Mammograms Using Cartesian Genetic Programming Evolved Artificial Neural Networks. Artificial Intelligence Applications and Innovations. AIAI. IFIP Advances in Information and Communication Technology. 436, págs. 203-213. Berlin: Springer. doi: https://doi.org/10.1007/978-3-662-44654-6_20
American Cancer Society. (2019). Cancer.org. Obtenido de La densidad de los senos y el informe de su mamograma: https://www.cancer.org/es/cancer/cancer-de-seno/pruebas-de-deteccion-y-deteccion-temprana-del-cancer-de-seno/mamogramas/la-densidad-de-los-senos-y-el-informe-de-su-mamograma.html
Araque Volk, N. (20 de marzo de 2019). Regularizando nuestra red: DropOut. Obtenido de MC.AI: https://mc.ai/regularizando-nuestra-red-dropout/
Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N., . . . Madabhushi, A. (18 de abril de 2017). Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent. Scientific Reports, 7(46450). Recuperado el 30 de octubre de 2019, de https://doi.org/10.1038/srep46450
Chacón G, Rodríguez JE, Bermúdez V, Vera M, Hernández JD, Vargas S, Pardo A, Lameda C, Madriz D, Bravo AJ. Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer. F1000Res. 2018 Jul 17;7:1098. doi: 10.12688/f1000research.14491.2. PMID: 30473775; PMCID: PMC6234734.
Global Cancer Observatory. (2018). Colombia. World Health Organization, Switzerland. Geneva: Internacional Agency for Research on Cancer. Obtenido de https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf
Jalandhar, D., & Sharma, A. (2016). DDSM Utility v3.1. Obtenido de https://github.com/trane293/DDSMUtility/blob/mamast/Tutorial.pdf
Jean-Baptiste Lamy, Boomadevi Sekar, Gilles Guezennec, Jacques Bouaud, & Brigitte Séroussi. (2019). Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach. Artificial Intelligence in Medicine, 94, 42-53. doi: https://doi.org/10.1016/j.artmed.2019.01.001
Keras. (2020). Layer activation functions. Obtenido de Keras: https://keras.io/api/layers/activations/
Kontos, K., & Maragoudakis, M. (2013). Breast Cancer Detection in Mammogram Medical Images with Data Mining Techniques. 9th Artificial Intelligence Applications and Innovations (AIAI). 412, págs. 336-347. Paphos: Springer. doi: https://dx.doi.org/10.1007/978-3-642-41142-7_35
Pita Fernández, S., & Pértegas Díaz, S. (07 de diciembre de 2010). Fisterra. Recuperado el 03 de septiembre de 2019, de Pruebas diagnósticas: Sensibilidad y especificidad: https://www.fisterra.com/mbe/investiga/pruebas_diagnosticas/pruebas_diagnosticas.Asp
PLOS. (13 de marzo de 2019). Convolutional neural network for cell classification using microscope images of intracellular actin networks. Obtenido de PLOS ONE: https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0213626.g002
Prabhu. (04 de marzo de 2018). Obtenido de https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
Renuka Joshi. (09 de septiembre de 2016). EXSILIO SOLUTIONS. Obtenido de Accuracy, Precision, Recall & F1 Score: Interpretation of Performance Measures: https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
Rios, Y., García-Rodríguez, J., Sanchez, E., Alanis, A., Ruiz-Velázquez, E., & Pardo, A. (2020). Neuro-fuzzy control for artificial pancreas: In silico development and validation. [Control neuro-fuzzy para páncreas artificial: Desarrollo y validación in-silico] RIAI - Revista Iberoamericana De Automatica e Informatica Industrial, 17(4), 390-400. doi:10.7326/0003-4819-157-5-201209040-00508
Rose, C. (2006). DDSM: Digital Database for Screening Mammography. Obtenido de University of South Florida: http://www.eng.usf.edu/cvprg/Mammography/Database.html
Nolan, T. (14 de mayo de 2020). CBIS-DDSM. Obtenido de Cancer Imaging Archive: https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
Wang, J., Yang, X., Cai, H., Tan, W., Jin, C., & Li, L. (07 de junio de 2016). Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning. Scientific Reports, 6(27327). doi:10.1038/srep27327
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.