Visual Feature Extraction For Seedling Classification And Analysis In The Plant Seedlings Dataset Using Data Science.
DOI:
https://doi.org/10.24054/raaas.v16i2.4079Keywords:
Data science, agriculture, image processing, feature extraction, histogramsAbstract
This study presents a methodology for the extraction, analysis, and evaluation of visual features from the Plant Seedlings dataset, aimed at enhancing the automatic classification of seedlings at early growth stages. Image processing techniques were applied to extract texture descriptors (LBP and Haralick features), color features (HSV histograms), shape features (contours and geometric metrics), and basic statistical measures (mean, standard deviation, kurtosis, and skewness). A descriptive statistical analysis of the extracted features revealed high variability among variables and low multicollinearity, indicating that the descriptors capture diverse and complementary aspects of the images. The results suggest that combining multiple types of descriptors improves the discriminative power for plant species classification. This methodology lays the foundation for the development of intelligent systems in precision agriculture, integrating electronic engineering and data science to support more efficient and sustainable agronomic decision-making.
Downloads
References
Ali, H., Lali, M. I., Nawaz, M. Z., Sharif, M., & Saleem, B. A. (2017). Symptom based automated detection of citrus diseases using color histogram and textural descriptors. Computers and Electronics in Agriculture, 138, 92–104. https://doi.org/10.1016/j.compag.2017.04.008
Altalak, M., Uddin, M. A., Alajmi, A., & Rizg, A. (2022). Smart Agriculture Applications Using Deep Learning Technologies: A Survey. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12125919
Castro Casadiego, S. A., Medina Delgado, B., Guevara Ibarra, D., Puerto López, K., Sánchez Mojica, K., & Niño Rondón, C. V. (2021). Efecto de los filtros morfológicos en los procesos de detección de objetos en movimiento. Mundo Fesc, 11(21), 87–95. https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/676
Han, J., & Lee, C. (2020). Color Lane Line Detection Using the Bhattacharyya Distance. 11th International Conference on Information, Intelligence, Systems and Applications, IISA 2020, 6–9. https://doi.org/10.1109/IISA50023.2020.9284147
Juwono, F. H., Wong, W. K., Verma, S., Shekhawat, N., Lease, B. A., & Apriono, C. (2023). Machine learning for weed–plant discrimination in agriculture 5.0: An in-depth review. In Artificial Intelligence in Agriculture (Vol. 10, pp. 13–25). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2023.09.002
Sharma, P., Berwal, Y. P. S., & Ghai, W. (2020). Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Information Processing in Agriculture, 7(4), 566–574. https://doi.org/10.1016/j.inpa.2019.11.001
Wang, C., Li, G., Xue, P., & Wu, Q. (2020). A Comparative Study of Face Recognition Classification Algorithms. International Journal of Advanced Network, Monitoring and Controls, 5(3), 23–29. https://doi.org/10.21307/ijanmc-2020-024
Yadav, S. P., & Yadav, S. (2020). Image fusion using hybrid methods in multimodality medical images. Medical and Biological Engineering and Computing, 58(4), 669–687. https://doi.org/10.1007/s11517-020-02136-6
Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., & Saeed, J. (2020). A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. Journal of Applied Science and Technology Trends, 1(2), 56–70. https://doi.org/10.38094/jastt1224
Zhou, W., Gao, S., Zhang, L., & Lou, X. (2020). Histogram of Oriented Gradients Feature Extraction from Raw Bayer Pattern Images. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(5), 946–950. https://doi.org/10.1109/TCSII.2020.2980557
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.