Biosorption of Losartan potassium in aqueous solution on non-living microalgae Chlorella sp.
DOI:
https://doi.org/10.24054/raaas.v16i1.3735Keywords:
emerging contaminants, Losartan potassium, microalgae Chlorella sp., adsorption isothermsAbstract
The presence of emerging contaminants such as Losartan potassium (LP) in bodies of water can alter the physiological functions of many species, affecting not only ecosystems but also human health. In this research, the removal capacity of the LP drug in aqueous solution on the non-living microalgae Chlorella sp., was evaluated keeping the temperature and the dose of adsorbent fixed. Initially, the microalgae Chlorella sp., was grown under adequate conditions of nutrients, light and air; after its growth cycle, it was filtered and dried at 60 °C for 24 h. The bioassays were carried out applying the batch adsorption technique at different concentrations of LP (1,60 – 21,6 mg/L). In addition, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were performed. The results show a satisfactory fit to the Freundlich isotherm model with multilayer growth of Losartan potassium on the surface. Its maximum adsorption capacity was 1,9 mg/g, with removal percentages between 7,9 and 37,5%. Non-living Chlorella sp., shows the characteristic bands of this type of microalgae with predominance of poorly porous structures. In conclusion, non-living Chlorella sp., constitutes a potential natural adsorbent with possible use in the removal of recalcitrant emerging contaminants.
Downloads
References
Angulo, E., G. Castellar-Ortega, M. Cely-Bautista, L. Ibáñez & L. Prasca. 2017. Discoloration of wastewater from a paint industry by the microalgae Chlorella sp. Rev. Mvz Córdoba. 22(1): 5706–5717. Córdoba, Colombia.
Castellar-Ortega, G., M. Cely-Bautista, B. Cardozo-Arrieta, E. Angulo, E. Mendoza, A. Zambrano, J. Jaramillo & C. Rosales. 2020. Removal of the direct navy-blue dye on modified coffee bean. Tecnol. y Ciencias del Agua. 11(4): 1–26. Ciudad de México, México.
De Wilt, A., A. Butkovskyi, K. Tuantet, L. Hernandez, T. Fernandes, A. Langenhoff & G. Zeeman. 2016. Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J. Hazard. Mater. 304: 84–92. Netherlands.
Escapa, C., R. N. Coimbra, S. Paniagua, A. I. García & M. Otero. 2015. Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresour. Technol. 185: 76–284. United Kingdom.
Guo, W. Q., H. S. Zheng, S. Li, J. S. Du, X. C. Feng, R. L. Yin, Q. L. Wu, N. Q. Ren & J. S. Chang. 2016. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresour. Technol. 221: 284–290. United Kingdom.
Hernández-Pérez, A. & J. I. Labbé. 2014. Microalgas, cultivo y beneficios. Rev. Biol. Mar. Oceanogr. 49(2): 157–173. Chile.
Infante, C., E. Angulo, A. Zárate, J. Z. Florez, F. Barrios & C. Zapata. 2012. Propagación de la Microalga Chlorella sp. en cualtivo por Lote: Cinética del crecimiento celular. Av. en Ciencias e Ing. 3: 159–164. La Serena, Chile.
Jiang, X., X. Yin, Y. Tian, S. Zhang, Y. Liu, Z. Deng, Y. Lin & L. Wang. 2022. Study on the mechanism of biochar loaded typical microalgae Chlorella removal of cadmium. Sci. Total Environ. 813:152488. Netherlands.
Lusina, M., T. Cindric, J. Tomaic, M. Peko, L. Pozaic & N. Musulin. 2005. Stability study of losartan/hydrochlorothiazide tablets. Int. J. Pharm. 291(1-2): 127–137. Netherlands.
Machado-Alba, J. E. M. M. Murillo-Muñoz & M. E. Machado-Duque. 2013. Effectiveness of lipid-lowering therapy among a sample of patients in Colombia. Pan. Am. J. Public Heal. 33(6): 383–390. United Kingdom.
Murray, K., S. Thomas & A. Bodour. 2010. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ. Pollut. 158: 3462-3471. United Kingdom.
Muter, O., I. Perkons, V. Svinka, R. Svinka & V. Bartkevics. 2017. Distinguishing the roles of carrier and biofilm in filtering media for the removal of pharmaceutical compounds from wastewater. Process Saf. Environ. Prot. 111: 462–474. United Kingdom.
Pino-Otín, M., S. Muñiz, J. Val & E. Navarro. 2017. Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms. Sci. Total Environ. 595: 441–450. Netherlands.
Portilla, A., D. Torres, M. Machado-Duque & J. Machado-Alba. 2017. Intervención para la racionalización del uso de losartán. Rev. Colomb. Cardiol. 24(1): 10–14. Bogotá D. C., Colombia.
Rao, K., G. B. Kumar, M. Ahmed & V. Joshi. 2012. Development and evaluation of chitosan based oral controlled matrix tablets of losartan potassium. Int. J. Pharm. Investig. 2(3): 157-161. India.
Rempel, A., J. Gutkoski, M. Nazari, G. Biolchi, V. Cavanhi, H. Treichel & L. Colla. 2021. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Sci Total Environ. 772: 144918. Netherlands.
Rofifah, D. 2020. Ficha Técnica - Losartan. Towar. a Media Hist. Doc. 12–26, 2020
Singh, D. V., A. K. Upadhyay, R. Singh & D.P. Singh. 2022. Implication of municipal wastewater on growth kinetics, biochemical profile, and defense system of Chlorella vulgaris and Scenedesmus vacuolatus. Environ. Technol. Innov. 26: 102334. Netherlands.
Spain, O. & C. Funk. 2022. Detailed Characterization of the Cell Wall Structure and Composition of Nordic Green Microalgae. J. Agric. Food Chem. 70: 9711-9721. United States.
Song, C., Y. Wei, Y. Qiu, Y. Qi, Y. Li & Y. Kitamura. 2018. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study. Bioresour. Technol. 272: 529–534. United Kingdom.
Subashchandrabose, S., B. Ramakrishnan, M. Megharaj, K. Venkateswarlu & R. Naidu. 2013. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 51: 59–72. United Kingdom.
Tarcomnicu, I., A. L. N. van Nuijs, W. Simons, L. Bervoets, R. Blust, P. Jorens, H. Neels & A. Covaci. 2011. Simultaneous determination of 15 top-prescribed pharmaceuticals and their metabolites in influent wastewater by reversed-phase liquid chromatography coupled to tandem mass spectrometry. Talanta. 83(3): 795–803. Netherlands.
Wang, L., Y. Li, P. Chen, M. Min, Y. Chen, J. Zhu & R. Ruan. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 101(8): 2623–2628. United Kingdom.
Downloads
Published
Versions
- 2025-04-29 (2)
- 2025-04-27 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.