Comparative Evaluation of Deep Learning Models for Environmental Image Classification Using TensorFlow and the Plant Seedlings Dataset

Authors

DOI:

https://doi.org/10.24054/raaas.v16i1.3716

Keywords:

Computational models, image processing, environmental, deep learning

Abstract

This article compares the performance of four deep learning models for the classification of seedling plant images captured under natural conditions. A custom convolutional neural network (CNN) and three pre-trained architectures—MobileNetV2, ResNet50, and EfficientNetB0—were evaluated using the Plant Seedlings Dataset, which contains over 4,700 images across twelve different species. The methodology involved image preprocessing, data augmentation, training in Google Colab, and evaluation through accuracy, macro F1-score, and confusion matrices. Results indicate that transfer learning models significantly outperform the custom CNN in terms of accuracy and generalization. EfficientNetB0 achieved the best overall performance (98.51% accuracy), while MobileNetV2 stood out for its computational efficiency (5 ms per prediction). ResNet50 reached competitive accuracy (98.11%) but required higher training and inference costs. The study confirms that modern architectures enable highly accurate classification even in visually complex scenarios and provides a comparative guide for model selection based on precision and computational constraints. These findings are relevant for real-world applications of artificial intelligence in ecology, environmental monitoring, and precision agriculture.

Downloads

Download data is not yet available.

References

Alajrami, M. A., & Abu-Naser, S. S. (2019). Type of tomato classification using deep learning. International Journal of Academic Pedagogical Research. http://www.ijeais.org/ijapr

Ayyub, B. M. (2014). Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making. Risk Analysis, 34(2), 340–355. https://doi.org/10.1111/risa.12093

Barra Bello, T. C., Salvatierra Melgar, A., Candia Haro, I. M., & Vargas-Vargas, G. (2021). Gestión de riesgo de desastres en el marco de la cultura preventiva. Revista Venezolana de Gerencia, 26(94), 903–914. https://doi.org/10.52080/rvgv26n94.26

Beck, M. A., Liu, C. Y., Bidinosti, C. P., Henry, C. J., Godee, C. M., & Ajmani, M. (2020). An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture. PLOS ONE, 15(12), e0243923. https://doi.org/10.1371/journal.pone.0243923

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497

Buitrago González, M. E., Santacoloma Londoño, S., Villegas Méndez, L. C., & Martínez Martina, M. A. (2020). Educación para la sostenibilidad en ingeniería ambiental como aporte al desarrollo social. Encuentro Internacional de Educación en Ingeniería ACOFI 2020, 1–8. https://doi.org/10.26507/ponencia.709

Bustamante, V. J. (2024). Competencias de sostenibilidad en la educación de ingenierías. Espacios, 45(6), 1–11. https://doi.org/10.48082/espacios-a24v45n06p01

Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. 1st International Conference on Secure Cyber Computing and Communications (ICSCCC), 278–282. https://doi.org/10.1109/ICSCCC.2018.8703316

Colmer, J., O’Neill, C. M., Wells, R., Bostrom, A., Reynolds, D., Websdale, D., Shiralagi, G., Lu, W., Lou, Q., Le Cornu, T., Ball, J., Renema, J., Flores Andaluz, G., Benjamins, R., Penfield, S., & Zhou, J. (2020). SeedGerm: A cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination. New Phytologist, 228(2), 778–793. https://doi.org/10.1111/nph.16736

Cremers, D., Reid, I., Saito, H., & Yang, M. H. (2014). Computer Vision–ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, November 1–5, 2014, Revised Selected Papers, Part I (Vol. 9003). Springer. https://doi.org/10.1007/978-3-319-16865-4

Cutter, S. L. (2024). Baseline resilience indicators for communities (BRIC): Theory to practice. In Encyclopedia of Technological Hazards and Disasters in the Social Sciences (pp. 41–45). Edward Elgar Publishing. https://doi.org/10.4337/9781800882201.ch07

de Medeiros, A. D., Capobiango, N. P., da Silva, J. M., da Silva, L. J., da Silva, C. B., & dos Santos Dias, D. C. F. (2020). Interactive machine learning for soybean seed and seedling quality classification. Scientific Reports, 10, 1–10. https://doi.org/10.1038/s41598-020-68273-y

Díaz Carrillo, A., Vento Tielves, R., & Cruz Chirolde, B. (2021). Plan de acciones de manejo ambiental para la mitigación de impactos ambientales de la Planta de Asfalto PC-3, de Consolación del Sur. Revista Angolana de Ciencias, 3(2), 430–446.

Domínguez Urdanivia, Y., & Rojas Valladares, A. L. (2021). La tutoría de acompañamiento, desde un enfoque inclusivo, en la formación del profesional en la educación superior. Revista Universidad y Sociedad, 13, 223–233. https://rus.ucf.edu.cu/index.php/rus/article/view/2228/2202

Fernández Berrocal, P., & Cabello, R. (2021). Inteligencia emocional como fundamento de la educación emocional. Revista Internacional de Educación Emocional y Bienestar, 1(1), 31–46. https://doi.org/10.48102/rieeb.2021.1.1.5

Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16(3), 253–267. https://doi.org/10.1016/j.gloenvcha.2006.04.002

Folke, C., Haider, L. J., Lade, S. J., Norström, A. V., & Rocha, J. (2021). Commentary: Resilience and social-ecological systems: A handful of frontiers. Global Environmental Change, 71, 102400. https://doi.org/10.1016/j.gloenvcha.2021.102400

Gavilanes Capelo, R. M., & Tipán Barros, B. G. (2021). La educación ambiental como estrategia para enfrentar el cambio climático. Alteridad, 16(2), 286–298. https://doi.org/10.17163/alt.v16n21.2021.10

Genze, N., Bharti, R., Grieb, M., Schultheiss, S. J., & Grimm, D. G. (2020). Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods, 16(1), 1–12. https://doi.org/10.1186/s13007-020-00699-x

Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 145, 47–61. https://doi.org/10.1016/j.ress.2015.08.006

Martínez-Rodríguez, R.-C., & Benítez-Corona, L. (2020). The ecology of resilience learning in ubiquitous environments to adverse situations. Comunicar, 28(62), 43–52. https://doi.org/10.3916/C62-2020-04

Masi, F., Rizzo, A., & Regelsberger, M. (2018). The role of constructed wetlands in a new circular economy, resource-oriented, and ecosystem services paradigm. Journal of Environmental Management, 216, 275–284. https://doi.org/10.1016/j.jenvman.2017.11.086

Mikolajczyk, A., & Grochowski, M. (2019). Data augmentation for improving deep learning in image classification problem. 2019 International Interdisciplinary PhD Workshop (IIPhDW), 117–122.

Moghadam, M. H., Saadatmand, M., Borg, M., Bohlin, M., & Lisper, B. (2018). Learning-based response time analysis in real-time embedded systems: A simulation-based approach. Proceedings of the International Conference on Software Engineering, 21–24. https://doi.org/10.1145/3194095.3194097

Morgan Asch, J. (2021). El análisis de la resiliencia y el rendimiento académico en los estudiantes universitarios. Revista Nacional de Administración, 12(1), e3534. https://doi.org/10.22458/rna.v12i1.3534

Moscoso, M. S. (2019). Hacia una integración de mindfulness e inteligencia emocional en psicología y educación. Liberabit: Revista Peruana de Psicología, 25(1), 107–117. https://doi.org/10.24265/liberabit.2019.v25n1.09

Ortega-Castro, J. O., González-Valdez, K. M., & Tibanta-Narváez, E. H. (2022). Las energías renovables y la sostenibilidad en territorio. Revista Dominio de las Ciencias, 8(2), 1401–1417. https://doi.org/10.23857/dc.v8i2.2712

Orosz, Á., Pimentel, J., Argoti, A., & Friedler, F. (2022). General formulation of resilience for designing process networks. Computers & Chemical Engineering, 165, 107932. https://doi.org/10.1016/j.compchemeng.2022.107932

Pastrana Huguet, J., Potenciano de la Heras, Á., & Gavari Starkie, E. (2019). Gestión del riesgo de desastres y protección civil en España: Aportes para el desarrollo de una cultura preventiva. REDER, Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres, 3(2), 44. https://doi.org/10.55467/reder.v3i2.31

Ramírez-Arias, J. L., Rubiano-Fonseca, A., & Jiménez-Moreno, R. (2020). Object recognition through artificial intelligence techniques. Revista Facultad de Ingeniería, 29(54), e10734. https://doi.org/10.19053/01211129.v29.n54.2020.10734

Sae-Lim, W., Wettayaprasit, W., & Aiyarak, P. (2019). Convolutional neural networks using MobileNet for skin lesion classification. 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 242–247. https://doi.org/10.1109/JCSSE.2019.8864155

Sharma, P., Berwal, Y. P. S., & Ghai, W. (2020). Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Information Processing in Agriculture, 7(4), 566–574. https://doi.org/10.1016/j.inpa.2019.11.001

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0

Tan, S., Liu, J., Lu, H., Lan, M., Yu, J., Liao, G., Wang, Y., Li, Z., Qi, L., & Ma, X. (2022). Machine learning approaches for rice seedling growth stages detection. Frontiers in Plant Science, 13, 914771. https://doi.org/10.3389/fpls.2022.914771

Yamashita, R., Nishio, M., Gian-Do, R. K., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9

Published

2025-04-11 — Updated on 2025-03-12

How to Cite

Niño Rondón, C. V., & López Bustamante, O. A. (2025). Comparative Evaluation of Deep Learning Models for Environmental Image Classification Using TensorFlow and the Plant Seedlings Dataset. REVISTA AMBIENTAL AGUA, AIRE Y SUELO, 16(1), 45–54. https://doi.org/10.24054/raaas.v16i1.3716

Most read articles by the same author(s)