Comparative Evaluation of Deep Learning Models for Environmental Image Classification Using TensorFlow and the Plant Seedlings Dataset
DOI:
https://doi.org/10.24054/raaas.v16i1.3716Keywords:
Computational models, image processing, environmental, deep learningAbstract
This article compares the performance of four deep learning models for the classification of seedling plant images captured under natural conditions. A custom convolutional neural network (CNN) and three pre-trained architectures—MobileNetV2, ResNet50, and EfficientNetB0—were evaluated using the Plant Seedlings Dataset, which contains over 4,700 images across twelve different species. The methodology involved image preprocessing, data augmentation, training in Google Colab, and evaluation through accuracy, macro F1-score, and confusion matrices. Results indicate that transfer learning models significantly outperform the custom CNN in terms of accuracy and generalization. EfficientNetB0 achieved the best overall performance (98.51% accuracy), while MobileNetV2 stood out for its computational efficiency (5 ms per prediction). ResNet50 reached competitive accuracy (98.11%) but required higher training and inference costs. The study confirms that modern architectures enable highly accurate classification even in visually complex scenarios and provides a comparative guide for model selection based on precision and computational constraints. These findings are relevant for real-world applications of artificial intelligence in ecology, environmental monitoring, and precision agriculture.
Downloads
References
Alajrami, M. A., & Abu-Naser, S. S. (2019). Type of tomato classification using deep learning. International Journal of Academic Pedagogical Research. http://www.ijeais.org/ijapr
Ayyub, B. M. (2014). Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making. Risk Analysis, 34(2), 340–355. https://doi.org/10.1111/risa.12093
Barra Bello, T. C., Salvatierra Melgar, A., Candia Haro, I. M., & Vargas-Vargas, G. (2021). Gestión de riesgo de desastres en el marco de la cultura preventiva. Revista Venezolana de Gerencia, 26(94), 903–914. https://doi.org/10.52080/rvgv26n94.26
Beck, M. A., Liu, C. Y., Bidinosti, C. P., Henry, C. J., Godee, C. M., & Ajmani, M. (2020). An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture. PLOS ONE, 15(12), e0243923. https://doi.org/10.1371/journal.pone.0243923
Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497
Buitrago González, M. E., Santacoloma Londoño, S., Villegas Méndez, L. C., & Martínez Martina, M. A. (2020). Educación para la sostenibilidad en ingeniería ambiental como aporte al desarrollo social. Encuentro Internacional de Educación en Ingeniería ACOFI 2020, 1–8. https://doi.org/10.26507/ponencia.709
Bustamante, V. J. (2024). Competencias de sostenibilidad en la educación de ingenierías. Espacios, 45(6), 1–11. https://doi.org/10.48082/espacios-a24v45n06p01
Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. 1st International Conference on Secure Cyber Computing and Communications (ICSCCC), 278–282. https://doi.org/10.1109/ICSCCC.2018.8703316
Colmer, J., O’Neill, C. M., Wells, R., Bostrom, A., Reynolds, D., Websdale, D., Shiralagi, G., Lu, W., Lou, Q., Le Cornu, T., Ball, J., Renema, J., Flores Andaluz, G., Benjamins, R., Penfield, S., & Zhou, J. (2020). SeedGerm: A cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination. New Phytologist, 228(2), 778–793. https://doi.org/10.1111/nph.16736
Cremers, D., Reid, I., Saito, H., & Yang, M. H. (2014). Computer Vision–ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, November 1–5, 2014, Revised Selected Papers, Part I (Vol. 9003). Springer. https://doi.org/10.1007/978-3-319-16865-4
Cutter, S. L. (2024). Baseline resilience indicators for communities (BRIC): Theory to practice. In Encyclopedia of Technological Hazards and Disasters in the Social Sciences (pp. 41–45). Edward Elgar Publishing. https://doi.org/10.4337/9781800882201.ch07
de Medeiros, A. D., Capobiango, N. P., da Silva, J. M., da Silva, L. J., da Silva, C. B., & dos Santos Dias, D. C. F. (2020). Interactive machine learning for soybean seed and seedling quality classification. Scientific Reports, 10, 1–10. https://doi.org/10.1038/s41598-020-68273-y
Díaz Carrillo, A., Vento Tielves, R., & Cruz Chirolde, B. (2021). Plan de acciones de manejo ambiental para la mitigación de impactos ambientales de la Planta de Asfalto PC-3, de Consolación del Sur. Revista Angolana de Ciencias, 3(2), 430–446.
Domínguez Urdanivia, Y., & Rojas Valladares, A. L. (2021). La tutoría de acompañamiento, desde un enfoque inclusivo, en la formación del profesional en la educación superior. Revista Universidad y Sociedad, 13, 223–233. https://rus.ucf.edu.cu/index.php/rus/article/view/2228/2202
Fernández Berrocal, P., & Cabello, R. (2021). Inteligencia emocional como fundamento de la educación emocional. Revista Internacional de Educación Emocional y Bienestar, 1(1), 31–46. https://doi.org/10.48102/rieeb.2021.1.1.5
Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16(3), 253–267. https://doi.org/10.1016/j.gloenvcha.2006.04.002
Folke, C., Haider, L. J., Lade, S. J., Norström, A. V., & Rocha, J. (2021). Commentary: Resilience and social-ecological systems: A handful of frontiers. Global Environmental Change, 71, 102400. https://doi.org/10.1016/j.gloenvcha.2021.102400
Gavilanes Capelo, R. M., & Tipán Barros, B. G. (2021). La educación ambiental como estrategia para enfrentar el cambio climático. Alteridad, 16(2), 286–298. https://doi.org/10.17163/alt.v16n21.2021.10
Genze, N., Bharti, R., Grieb, M., Schultheiss, S. J., & Grimm, D. G. (2020). Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods, 16(1), 1–12. https://doi.org/10.1186/s13007-020-00699-x
Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 145, 47–61. https://doi.org/10.1016/j.ress.2015.08.006
Martínez-Rodríguez, R.-C., & Benítez-Corona, L. (2020). The ecology of resilience learning in ubiquitous environments to adverse situations. Comunicar, 28(62), 43–52. https://doi.org/10.3916/C62-2020-04
Masi, F., Rizzo, A., & Regelsberger, M. (2018). The role of constructed wetlands in a new circular economy, resource-oriented, and ecosystem services paradigm. Journal of Environmental Management, 216, 275–284. https://doi.org/10.1016/j.jenvman.2017.11.086
Mikolajczyk, A., & Grochowski, M. (2019). Data augmentation for improving deep learning in image classification problem. 2019 International Interdisciplinary PhD Workshop (IIPhDW), 117–122.
Moghadam, M. H., Saadatmand, M., Borg, M., Bohlin, M., & Lisper, B. (2018). Learning-based response time analysis in real-time embedded systems: A simulation-based approach. Proceedings of the International Conference on Software Engineering, 21–24. https://doi.org/10.1145/3194095.3194097
Morgan Asch, J. (2021). El análisis de la resiliencia y el rendimiento académico en los estudiantes universitarios. Revista Nacional de Administración, 12(1), e3534. https://doi.org/10.22458/rna.v12i1.3534
Moscoso, M. S. (2019). Hacia una integración de mindfulness e inteligencia emocional en psicología y educación. Liberabit: Revista Peruana de Psicología, 25(1), 107–117. https://doi.org/10.24265/liberabit.2019.v25n1.09
Ortega-Castro, J. O., González-Valdez, K. M., & Tibanta-Narváez, E. H. (2022). Las energías renovables y la sostenibilidad en territorio. Revista Dominio de las Ciencias, 8(2), 1401–1417. https://doi.org/10.23857/dc.v8i2.2712
Orosz, Á., Pimentel, J., Argoti, A., & Friedler, F. (2022). General formulation of resilience for designing process networks. Computers & Chemical Engineering, 165, 107932. https://doi.org/10.1016/j.compchemeng.2022.107932
Pastrana Huguet, J., Potenciano de la Heras, Á., & Gavari Starkie, E. (2019). Gestión del riesgo de desastres y protección civil en España: Aportes para el desarrollo de una cultura preventiva. REDER, Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres, 3(2), 44. https://doi.org/10.55467/reder.v3i2.31
Ramírez-Arias, J. L., Rubiano-Fonseca, A., & Jiménez-Moreno, R. (2020). Object recognition through artificial intelligence techniques. Revista Facultad de Ingeniería, 29(54), e10734. https://doi.org/10.19053/01211129.v29.n54.2020.10734
Sae-Lim, W., Wettayaprasit, W., & Aiyarak, P. (2019). Convolutional neural networks using MobileNet for skin lesion classification. 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 242–247. https://doi.org/10.1109/JCSSE.2019.8864155
Sharma, P., Berwal, Y. P. S., & Ghai, W. (2020). Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Information Processing in Agriculture, 7(4), 566–574. https://doi.org/10.1016/j.inpa.2019.11.001
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0
Tan, S., Liu, J., Lu, H., Lan, M., Yu, J., Liao, G., Wang, Y., Li, Z., Qi, L., & Ma, X. (2022). Machine learning approaches for rice seedling growth stages detection. Frontiers in Plant Science, 13, 914771. https://doi.org/10.3389/fpls.2022.914771
Yamashita, R., Nishio, M., Gian-Do, R. K., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.