Prediction of Landslide-Susceptible Areas Using Artificial Neural Network Mathematical Model in the Upper Pamplonita River Basin
DOI:
https://doi.org/10.24054/raaas.v15i2.3187Keywords:
Modeling, Artificial Neural Network, landslide, Pamplonita River basinAbstract
The research focused on predicting areas susceptible to landslides in the upper Pamplonita River basin using Artificial Neural Networks (RNA). Principal Component Analysis (PCA) was applied to reduce multicollinearity among variables, resulting in the selection of three principal components (PC1, PC2, and PC3) that captured 87% and 91% of the cumulative variance, respectively. The variables considered included geometric and environmental factors such as slope, curvature, drainage density, and various vegetation indices.
The RNA was implemented using the Keras library of TensorFlow, configured with five hidden layers (82, 5, 125, 126, and 58 neurons) and a dropout rate of 0.32837 to prevent overfitting. Optimization algorithms like Adam and the sigmoid activation function were utilized, with a learning rate set at 0.00012. The model was trained over 500 epochs, achieving an AUC value of 0.98, indicating high precision in predicting susceptibility areas.
The susceptibility evaluation showed that 50% of the study area has high or very high susceptibility to landslides, with areas classified as very high covering approximately 1173 ha and high susceptibility areas covering 716 ha. The moderate, low and very low susceptibility zones cover 15%, 16% and 19% of the area, respectively. This distribution highlights the need for specific mitigation approaches to reduce vulnerability in the most landslide-prone areas.
Downloads
References
Aristizábal, E., López, S., Sánchez, O., Vásquez, M., Rincón, F., Ruiz-Vásquez, D., Restrepo, S., & Valencia, J. S. (2019). Evaluación de la amenaza por movimientos en masa detonados por lluvias para una región de los Andes colombianos estimando la probabilidad espacial, temporal, y magnitud. Revista Boletín de Geología, 41(3). https://doi.org/10.18273/revbol.v41n3-2019004
Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81(4). https://doi.org/10.1016/j.enggeo.2005.08.004
Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26(12), 1251–1263. https://doi.org/10.1002/esp.263
Beguería, S. (2006). Validation and evaluation of predictive models in hazard assessment and risk management. Natural Hazards, 37(3). https://doi.org/10.1007/s11069-005-5182-6
Cantillo Romero, J. R., Estrada Romero, J. J., & Henríquez Miranda, C. (2023). APLICACIÓN DE ALGORITMOS DE APRENDIZAJE AUTOMÁTICO EN GEOCIENCIA: REVISIÓN INTEGRAL Y DESAFÍO FUTURO. REVISTA AMBIENTAL AGUA, AIRE Y SUELO, 14(2 SE-Artículos), 9–18. https://doi.org/10.24054/raaas.v14i2.2783
Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250. https://doi.org/10.1016/j.catena.2013.08.006
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8
Corporación OSSO, LA RED, & UNDRR. (2024). Desinventar. https://db.desinventar.org/
Correa-Muñoz, N. A., & Higidio-Castro, J. F. (2017). Determination of landslide susceptibility in linear infrastructure. Case: Aqueduct network in Palacé, Popayan (Colombia). Ingenieria e Investigacion, 37(2), 17–24. https://doi.org/10.15446/ing.investig.v37n2.59654
Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
ESRI. (2018). ArcGis Desktop Help in ArcMap utility. https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8). https://doi.org/10.1016/j.patrec.2005.10.010
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3–4), 99–111. https://doi.org/10.1016/j.enggeo.2008.03.014
Frattini, P., Crosta, G., & Carrara, A. (2010). Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology, 111(1–4), 62–72. https://doi.org/10.1016/j.enggeo.2009.12.004
Goyes-Peñafiel, P., & Hernandez-Rojas, A. (2021). Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia. Engineering Geology, 280. https://doi.org/10.1016/j.enggeo.2020.105958
Gwelo, A. S. (2019). PRINCIPAL COMPONENTS TO OVERCOME MULTICOLLINEARITY PROBLEM. Oradea Journal of Business and Economics, 4(1). https://doi.org/10.47535/1991ojbe062
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A. R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97. https://doi.org/10.1109/MSP.2012.2205597
Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., Zhu, A. X., Chen, W., & Ahmad, B. Bin. (2018). Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 163, 399–413. https://doi.org/10.1016/j.catena.2018.01.005
Hosmer, D. W., & Lemeshow, S. (2002). Applied Logistic Regression. In Applied Logistic Regression (Vol. 354). https://doi.org/10.1002/0471722146
Huang, D., Jiang, F., Li, K., Tong, G., & Zhou, G. (2022). Scaled PCA: A New Approach to Dimension Reduction. Management Science, 68(3). https://doi.org/10.1287/mnsc.2021.4020
Kalantar, B., Ueda, N., Lay, U. S., Al-Najjar, H. A. H., & Halin, A. A. (2019). Conditioning Factors Determination for Landslide Susceptibility Mapping Using Support Vector Machine Learning. International Geoscience and Remote Sensing Symposium (IGARSS), 9626–9629. https://doi.org/10.1109/IGARSS.2019.8898340
Lee, S., Ryu, J. H., Lee, M. J., & Won, J. S. (2003). Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environmental Geology, 44(7), 820–833. https://doi.org/10.1007/s00254-003-0825-y
Lei, T. C., Wan, S., Chou, T. Y., & Pai, H. C. (2011). The knowledge expression on debris flow potential analysis through PCA + LDA and rough sets theory: A case study of Chen-Yu-Lan watershed, Nantou, Taiwan. Environmental Earth Sciences, 63(5), 981–997. https://doi.org/10.1007/s12665-010-0775-0
Mantilla, A., & Goyes-Peñafiel, P. (2023). Predicción de la ocurrencia de depósitos minerales tipo pórfido usando técnicas de aprendizaje automático.
Mindrila, D., & Balentyne, P. (2017). Scatterplots and Correlation. http://www.westga.edu/academics/research/vrc/assets/docs/scatterplots_and_correlation_notes.pdf
Nandi, A., & Shakoor, A. (2006). Preparation of a landslide susceptibility map of Summit County , Ohio , USA , using numerical models. 660, 1–11. https://www.researchgate.net/publication/228392404
Ordoñez, J. (2019). Movimiento en masa por lluvias intensas en el Perú. Repositorio Institucional - SENAMHI, 1–103. http://repositorio.senamhi.gob.pe/handle/20.500.12542/291#.XuuzTXE3a2o.mendeley
Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464. https://doi.org/10.1007/s12665-012-1842-5
Remondo, J., González-Díez, A., Díaz de Terán, J. R., & Cendrero, A. (2003). Landslide susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba Valley, Guipúzcoa (Spain). Natural Hazards, 30(3). https://doi.org/10.1023/B:NHAZ.0000007202.12543.3a
Rodríguez, E., Sandoval, J., Chaparro, J., Trejos, G., Medina, E., Ramírez, K. C., Castro, E., Castro, J. A., & Ruiz, G. L. (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1: 25.000. In Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1: 25.000. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585978225
Soeters, R., & Van Westen, C. J. (1996). Slope instability recognition, analysis, and zonation. Special Report - National Research Council, Transportation Research Board, 247, 129–177. https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/1996/general/vanwesten_slo.pdf
Tekin, S., & Çan, T. (2022). Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method. Environmental Science and Pollution Research, 29(31), 47174–47188. https://doi.org/10.1007/s11356-022-19248-1
Wang, Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment, 666. https://doi.org/10.1016/j.scitotenv.2019.02.263
Warmerdam, F., Rouault, E., & Others. (2023, January 8). gdalwarp — GDAL documentation. https://doi.org/https://doi.org/10.5281/zenodo.5884351
Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3–4), 251–266. https://doi.org/10.1016/J.ENGGEO.2005.02.002
Yi, Y., Zhang, Z., Zhang, W., & Xu, C. (2019). Comparison of Different Machine Learning Models for Landslide Susceptibility Mapping. International Geoscience and Remote Sensing Symposium (IGARSS), 9318–9321. https://doi.org/10.1109/IGARSS.2019.8898208
Yilmaz, I. (2009). A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bulletin of Engineering Geology and the Environment, 68(3). https://doi.org/10.1007/s10064-009-0185-2
Zhang, H., Zhang, G., & Jia, Q. (2019). Integration of Analytical Hierarchy Process and Landslide Susceptibility Index Based Landslide Susceptibility Assessment of the Pearl River Delta Area, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(11), 4239–4251. https://doi.org/10.1109/JSTARS.2019.2938554
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 REVISTA AMBIENTAL AGUA, AIRE Y SUELO
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.