Obtención de compuestos bioactivos a partir de residuos agroindustriales: Una revisión

Autores/as

DOI:

https://doi.org/10.24054/raaas.v16i1.3666

Palabras clave:

Compuestos bioactivos, agroindustrial, beneficios a la salud

Resumen

Los compuestos bioactivos podrían ofrecer beneficios para la salud que van más allá de su valor nutricional y están incorporados o presentes de manera original en las matrices alimentarias. No obstante, los componentes de los compuestos bioactivos se encuentran mayormente en los subproductos del sector agroindustrial, generando un gran volumen de residuos agroindustriales a lo largo de la cadena de suministro de alimentos, y si no se gestionan adecuadamente, pueden representar una amenaza para el medio ambiente, la rentabilidad y la adecuada distribución nutricional de alimentos a los consumidores. Por lo tanto, es importante desarrollar métodos para procesar estos subproductos agroindustriales, incluidos los biológicos. Estos pueden mejorar la recuperación de compuestos bioactivos, facilitando su uso en las industrias alimentaria y farmacéutica. En comparación con los procesos no biológicos, los biológicos tienen más ventajas, incluidos la producción de extractos bioactivos de alta calidad, así como la extracción de compuestos menos tóxicos y más respetuosos con el medio ambiente. En las metodologías biológicas, la obtención por medio de enzimas, así como la fermentación, se destacan como claves para la producción de bioactivos a partir de diversos residuos agroindustriales. En este artículo, se busca describir en detalle los bioactivos más relevantes y abundantes en los subproductos agroindustriales, así como las metodologías biológicas para su extracción. Igualmente, aporta información para mejorar el aprovechamiento de estos bioactivos, especialmente en la alimentaria y farmacéutica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta, D. M. L. C. (2019). Polifenoles: compuestos bioactivos con efectos benéficos en la prevención de diabetes tipo 2. REDCieN, 1, 6-6.

Adetunji, C. O., Akram, M., Mtewa, A. G., Jeevanandam, J., Egbuna, C., Ogodo, A. C., Gautam, A. K., Gupta, A., Onyekere, P. F., Tupas, G. D., Ezzat, S. M., Pareek, S., Tijjani, H., Sharif, N., Ezhilarasan, D., Hassan, S., Sagar, N. A., El Sayed, A. M., Mehdizadeh, M., … Olatunde, A. (2021). Chapter 18—Biochemical and pharmacotherapeutic potentials of lycopene in drug discovery. En C. Egbuna, A. P. Mishra, & M. R. Goyal (Eds.), Preparation of Phytopharmaceuticals for the Management of Disorders (pp. 307-360). Academic Press. https://doi.org/10.1016/B978-0-12-820284-5.00015-0 DOI: https://doi.org/10.1016/B978-0-12-820284-5.00015-0

Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U. ur, Soares, B. C. V., Souza, S. L. Q., Pimentel, T. C., Scudino, H., Guimarães, J. T., Esmerino, E. A., Freitas, M. Q., Almada, R. B., Vendramel, S. M. R., Silva, M. C., & Cruz, A. G. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science & Technology, 88, 361-372. https://doi.org/10.1016/j.tifs.2019.04.003 DOI: https://doi.org/10.1016/j.tifs.2019.04.003

Ahmed, R., & Chun, B.-S. (2018). Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. The Journal of Supercritical Fluids, 141, 88-96. https://doi.org/10.1016/j.supflu.2018.03.006 DOI: https://doi.org/10.1016/j.supflu.2018.03.006

Al Mamoori, F., & Al Janabi, R. (2018). Recent advances in microwave-assisted extraction (mae) of medicinal plants: a review. International Research Journal Of Pharmacy, 9(6), 22-29. https://doi.org/10.7897/2230-8407.09684 DOI: https://doi.org/10.7897/2230-8407.09684

Ameer, K., Shahbaz, H. M., & Kwon, J. (2017). Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295-315. https://doi.org/10.1111/1541-4337.12253 DOI: https://doi.org/10.1111/1541-4337.12253

Anarjan, N., & Jouyban, A. (2017). Preparation of lycopene nanodispersions from tomato processing waste: Effects of organic phase composition. Food and Bioproducts Processing, 103, 104-113. https://doi.org/10.1016/j.fbp.2017.03.003 DOI: https://doi.org/10.1016/j.fbp.2017.03.003

Baraniak, J., & Kania-Dobrowolska, M. (2022). The Dual Nature of Amaranth—Functional Food and Potential Medicine. Foods, 11(4), 618. https://doi.org/10.3390/foods11040618 DOI: https://doi.org/10.3390/foods11040618

Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607. https://doi.org/10.1016/j.mcat.2019.110607 DOI: https://doi.org/10.1016/j.mcat.2019.110607

Bedoic, R., Cosic, B., & Duic, N. (2019). Technical potential and geographic distribution of agricultural residues, co-products and by-products in the European Union. Science of The Total Environment, 686, 568-579. https://doi.org/10.1016/j.scitotenv.2019.05.219 DOI: https://doi.org/10.1016/j.scitotenv.2019.05.219

Begum, N., Rajendra Prasad,N., Kanimozhi ,G., & and Agilan, B. (2022). Apigenin prevents gamma radiation-induced gastrointestinal damages by modulating inflammatory and apoptotic signalling mediators. Natural Product Research, 36(6), 1631-1635. https://doi.org/10.1080/14786419.2021.1893316 DOI: https://doi.org/10.1080/14786419.2021.1893316

Ben Hamad Bouhamed, S., Krichen, F., & Kechaou, N. (2020). Feather Protein Hydrolysates: A Study of Physicochemical, Functional Properties and Antioxidant Activity. Waste and Biomass Valorization, 11(1), 51-62. https://doi.org/10.1007/s12649-018-0451-2 DOI: https://doi.org/10.1007/s12649-018-0451-2

Benkovic, V., Horvat Knezevic, A., Dikic, D., Lisicic, D., Orsolic, N., Basic, I., Kosalec, I., & Kopjar, N. (2008). Efectos radioprotectores del propoleo y la quercetina en ratones irradiados con rayos y evaluados mediante el ensayo del cometa alcalino. Phytomedicine, 15(10), 851-858. https://doi.org/10.1016/j.phymed.2008.02.010 DOI: https://doi.org/10.1016/j.phymed.2008.02.010

Braga, A. R. C., Silva, M. F., Oliveira, J. V., Treichel, H., & Kalil, S. J. (2014). A New approach to evaluate immobilization of B-galactosidase on eupergitc: structural, kinetic, and thermal characterization. Química Nova. https://doi.org/10.5935/0100-4042.20140128 DOI: https://doi.org/10.5935/0100-4042.20140128

Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149-161. https://doi.org/10.1016/j.foodres.2015.01.016 DOI: https://doi.org/10.1016/j.foodres.2015.01.016

Caballero-Pérez LA, Tejedor-Arias R, Salas-Osorio EJ. (2023a). Survival of a mixed culture of microencapsulated probiotic strains against the gastrointestinal barrier in vitro. ISSN2521-9715. Revista Científica de la Facultad de Ciencias Veterinarias – septiembre 2023. 33(2) :1-9. https://produccioncientificaluz.org/index.php/cientifica. DOI: https://doi.org/10.52973/rcfcv-e33296

Caballero-Pérez LA, Hernández-Monzón A, Tejedor-Arias R, Montes.-Montes EJ. (2023b). Caracterización de mezclas de materiales poliméricos naturales para encapsulación, mediante secado por aspersión. Rev Colomb Tecnol Avanz. 41(1):1-12. Recuperado a partir de https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2412. DOI: https://doi.org/10.24054/rcta.v1i41.2412

Calsada Uribe Nataly Jullyet.; Caballero Pérez Luz Alba; Soto Tolosa Erika Paola. (2022). Elaboración de una barra proteica con recubrimiento de un gel energético a base de café. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 20 N° 2. Pp: 5 - 23. DOI: https://doi.org/10.24054/limentech.v20i2.2282. DOI: https://doi.org/10.24054/limentech.v20i2.2282

Caseiro, M., Ascenso, A., Costa, A., Creagh-Flynn, J., Johnson, M., & Simões, S. (2020). Lycopene in human health. LWT, 127, 109323. https://doi.org/10.1016/j.lwt.2020.109323 DOI: https://doi.org/10.1016/j.lwt.2020.109323

Chaudhary, P., Shukla, S. K., Kumar, I. P., Namita, I., Afrin, F., & Sharma, R. K. (2006). Radioprotective properties of apple polyphenols: An in vitro study. Molecular and Cellular Biochemistry, 288(1), 37-46. https://doi.org/10.1007/s11010-005-9116-0 DOI: https://doi.org/10.1007/s11010-005-9116-0

Chauhan, C., Dhir, A., Akram, M. U., & Salo, J. (2021). Food loss and waste in food supply chains. A systematic literature review and framework development approach. Journal of Cleaner Production, 295, 126438. https://doi.org/10.1016/j.jclepro.2021.126438 DOI: https://doi.org/10.1016/j.jclepro.2021.126438

Chen, P.-J., Tseng, J.-K., Lin, Y.-L., Wu, Y.-H. S., Hsiao, Y.-T., Chen, J.-W., & Chen, Y.-C. (2017). Protective Effects of Functional Chicken Liver Hydrolysates against Liver Fibrogenesis: Antioxidation, Anti-inflammation, and Antifibrosis. Journal of Agricultural and Food Chemistry, 65(24), 4961-4969. https://doi.org/10.1021/acs.jafc.7b01403 DOI: https://doi.org/10.1021/acs.jafc.7b01403

Chiriac, E. R., Chitescu, C. L., Geana, E.-I., Gird, C. E., Socoteanu, R. P., & Boscencu, R. (2021). Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices—A Review. Separations, 8(5), Article 5. https://doi.org/10.3390/separations8050065 DOI: https://doi.org/10.3390/separations8050065

Cury, K. C., Aguas, Y. A., Martínez, A. M., Olivero, R. O., & Chams, L. C. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), Article S1. https://doi.org/10.24188/recia.v9.nS.2017.530 DOI: https://doi.org/10.24188/recia.v9.nS.2017.530

Da Silva Bambirra Alves, F. E., Carpiné, D., Teixeira, G. L., Goedert, A. C., de Paula Scheer, A., & Ribani, R. H. (2021). Valorization of an Abundant Slaughterhouse By-product as a Source of Highly Technofunctional and Antioxidant Protein Hydrolysates. Waste and Biomass Valorization, 12(1), 263-279. https://doi.org/10.1007/s12649-020-00985-8 DOI: https://doi.org/10.1007/s12649-020-00985-8

Da Silva Guedes, J., Pimentel, T. C., Diniz-Silva, H. T., Tayse da Cruz Almeida, E., Tavares, J. F., Leite de Souza, E., Garcia, E. F., & Magnani, M. (2019). Protective effects of b-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic lactobacilli. LWT, 116, 108496. https://doi.org/10.1016/j.lwt.2019.108496 DOI: https://doi.org/10.1016/j.lwt.2019.108496

Dabrowska, M., Sommer, A., Sinkiewicz, I., Taraszkiewicz, A., & Staroszczyk, H. (2022). An optimal designed experiment for the alkaline hydrolysis of feather keratin. Environmental Science and Pollution Research, 29(16), 24145-24154. https://doi.org/10.1007/s11356-021-17649-2 DOI: https://doi.org/10.1007/s11356-021-17649-2

Dave, D., & Routray, W. (2018). Current scenario of Canadian fishery and corresponding underutilized species and fishery byproducts: A potential source of omega-3 fatty acids. Journal of Cleaner Production, 180, 617-641. https://doi.org/10.1016/j.jclepro.2018.01.091 DOI: https://doi.org/10.1016/j.jclepro.2018.01.091

Díaz, E., Cerón, G. I., & Vargas, E. A. (2023). Encapsulación de compuestos bioactivos: Una revisión sistemática. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10(20), Article 20. https://doi.org/10.29057/icbi.v10i20.9575 DOI: https://doi.org/10.29057/icbi.v10i20.9575

De la Espriella Angarita Stephanie, Torrenegra Alarcón Milady, León Méndez Glicerio. (2023). Guinda (Pronus Ceresus) como fuente de moléculas bioactivas. Revisión. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 21 N° 1. Pp: 124 – 136. https://doi.org/10.24054/limentech.v21i1.2365 DOI: https://doi.org/10.24054/limentech.v21i1.2365

Di-Medeiros Leal, M. C. B., Ribeiro, G. O., Rezende Ribeiro, M. L., Ferreira, A. G., Cavalcante Braga, A. R., Egea, M. B., & Lemes, A. C. (2022). 16—Analysis and characterization of starches from alternative sources. En S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, & M. Ramesh (Eds.), Biodegradable Polymers, Blends and Composites (pp. 465-488). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-823791-5.00025-9 DOI: https://doi.org/10.1016/B978-0-12-823791-5.00025-9

Dora, M., Wesana, J., Gellynck, X., Seth, N., Dey, B., & Steur, H. (2020). Importance of sustainable operations in food loss: Evidence from the Belgian food processing industry. Annals of Operations Research, 290(1), 47-72. DOI: https://doi.org/10.1007/s10479-019-03134-0

Du, B., Zhu, F., & Xu, B. (2014). b-Glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. Journal of Cereal Science, 59(1), 95-100. https://doi.org/10.1016/j.jcs.2013.11.004 DOI: https://doi.org/10.1016/j.jcs.2013.11.004

Equipos y laboratorio de Colombia. (2025, marzo 18). Elmasonic baño para limpieza de tamices por ultrasonido—S 50 R (Colombia) [Text]. Equipos y laboratorio de Colombia; equiposylaboratorio.com. https://www.equiposylaboratorio.com/portal/productos/elmasonic-bano-para-limpieza-de-tamices-por-ultrasonido-s-50-r

Fathi, P., Moosavi-Nasab, M., Mirzapour-Kouhdasht, A., & Khalesi, M. (2021). Generation of hydrolysates from rice bran proteins using a combined ultrasonication-Alcalase hydrolysis treatment. Food Bioscience, 42, 101110. https://doi.org/10.1016/j.fbio.2021.101110 DOI: https://doi.org/10.1016/j.fbio.2021.101110

Fernández, Y., Sotto, K. D., Vargas, L. A., Fernández, Y., Sotto, K. D., & Vargas-Marín, L. A. (2020). Impactos ambientales de la producción del café, y el aprovechamiento sustentable de los residuos generados. Producción + Limpia, 15(1), 93-110. https://doi.org/10.22507/pml.v15n1a7 DOI: https://doi.org/10.22507/pml.v15n1a7

Fidelis, M., Oliveira, S. M. de, Santos, J. S., Escher, G. B., Rocha, R. S., Cruz, A. G., Carmo, M. A. V. do, Azevedo, L., Kaneshima, T., Oh, W. Y., Shahidi, F., & Granato, D. (2020). From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. Journal of Dairy Science, 103(2), 1131-1140. https://doi.org/10.3168/jds.2019-17173 DOI: https://doi.org/10.3168/jds.2019-17173

Fortunati, E., Luzi, F., Puglia, D., & Torre, L. (2016). Chapter 1—Extraction of Lignocellulosic Materials From Waste Products. En D. Puglia, E. Fortunati, & J. M. Kenny (Eds.), Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements (pp. 1-38). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-44248-0.00001-8 DOI: https://doi.org/10.1016/B978-0-323-44248-0.00001-8

Franco, D., Munekata, P. E. S., Agregán, R., Bermúdez, R., López-Pedrouso, M., Pateiro, M., & Lorenzo, J. M. (2020). Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants, 9(2), Article 2. https://doi.org/10.3390/antiox9020090 DOI: https://doi.org/10.3390/antiox9020090

Gan, R.-Y., Chan, C.-L., Yang, Q.-Q., Li, H.-B., Zhang, D., Ge, Y.-Y., Gunaratne, A., Ge, J., & Corke, H. (2019). 9—Bioactive compounds and beneficial functions of sprouted grains. En H. Feng, B. Nemzer, & J. W. DeVries (Eds.), Sprouted Grains (pp. 191-246). AACC International Press. https://doi.org/10.1016/B978-0-12-811525-1.00009-9 DOI: https://doi.org/10.1016/B978-0-12-811525-1.00009-9

García, K. J. P., Toloza, E. P. S., Leal, D. Z. H., & Pérez, L. A. C. (2023). Características sensoriales de una torta adicionada con harina de semilla de fenogreco (Trigonella foenum-graecum L.). Revista Ambiental Agua, Aire y Suelo, 14(2), Article 2. https://doi.org/10.24054/raaas.v14i2.2784 DOI: https://doi.org/10.24054/raaas.v14i2.2784

Garzón, A. G., Veras, F. F., Brandelli, A., & Drago, S. R. (2022). Purificación, identificación y estudios in silico de péptidos antioxidantes, antidiabetogénicos y antibacterianos obtenidos a partir de hidrolizado de grano gastado de sorgo. LWT, 153, 112414. https://doi.org/10.1016/j.lwt.2021.112414 DOI: https://doi.org/10.1016/j.lwt.2021.112414

Gildawie, K. R., Galli, R. L., Shukitt-Hale, B., & Carey, A. N. (2018). Protective Effects of Foods Containing Flavonoids on Age-Related Cognitive Decline. Current Nutrition Reports, 7(2), 39-48. https://doi.org/10.1007/s13668-018-0227-0 DOI: https://doi.org/10.1007/s13668-018-0227-0

Gonzalez, L. V. P., Gómez, S. P. M., & Abad, P. A. G. (2017). Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2), Article 2. https://doi.org/10.22490/21456453.2040 DOI: https://doi.org/10.22490/21456453.2040

Hassan, G., Shabbir, M. A., Ahmad, F., Pasha, I., Aslam, N., Ahmad, T., Rehman, A., Manzoor, M. F., Inam-Ur-Raheem, M., & Aadil, R. M. (2021a). Cereal processing waste, an environmental impact and value addition perspectives: A comprehensive treatise. Food Chemistry, 363, 130352. https://doi.org/10.1016/j.foodchem.2021.130352

Hassan, G., Shabbir, M. A., Ahmad, F., Pasha, I., Aslam, N., Ahmad, T., Rehman, A., Manzoor, M. F., Inam-Ur-Raheem, M., & Aadil, R. M. (2021b). Cereal processing waste, an environmental impact and value addition perspectives: A comprehensive treatise. Food Chemistry, 363, 130352. https://doi.org/10.1016/j.foodchem.2021.130352 DOI: https://doi.org/10.1016/j.foodchem.2021.130352

Hatami, T., Meireles, M. A. A., & Ciftci, O. N. (2019). Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modeling and optimization. Journal of Food Engineering, 241, 18-25. https://doi.org/10.1016/j.jfoodeng.2018.07.036 DOI: https://doi.org/10.1016/j.jfoodeng.2018.07.036

Hemker, A. K., Nguyen, L. T., Karwe, M., & Salvi, D. (2020). Efectos de la hidrólisis enzimática asistida por presión sobre las propiedades funcionales y bioactivas de los hidrolizados proteicos derivados de la tilapia ( Oreochromis niloticus ). LWT, 122, 109003. https://doi.org/10.1016/j.lwt.2019.109003 DOI: https://doi.org/10.1016/j.lwt.2019.109003

Hernández, E., De Jesús, E., & Zartha Sossa, J. W. (2021). Recovery of Biomolecules from Agroindustry by Solid-Liquid Enzyme-Assisted Extraction: A Review. Food Analytical Methods, 14(8), 1744-1777. https://doi.org/10.1007/s12161-021-01974-w DOI: https://doi.org/10.1007/s12161-021-01974-w

Hillman, G. G., Singh-Gupta, V., Runyan, L., Yunker, C. K., Rakowski, J. T., Sarkar, F. H., Miller, S., Gadgeel, S. M., Sethi, S., Joiner, M. C., & Konski, A. A. (2011). Soy isoflavones radiosensitize lung cancer while mitigating normal tissue injury. Radiotherapy and Oncology, 101(2), 329-336. https://doi.org/10.1016/j.radonc.2011.10.020 DOI: https://doi.org/10.1016/j.radonc.2011.10.020

Hosseinimehr, S. J., Mahmoudzadeh, A., Ahmadi, A., Mohamadifar, S., & Akhlaghpoor, S. (2009). Radioprotective effects of hesperidin against genotoxicity induced by y-irradiation in human lymphocytes. Mutagenesis, 24(3), 233-235. https://doi.org/10.1093/mutage/gep001 DOI: https://doi.org/10.1093/mutage/gep001

Instituto Tecnológico Metropolitano. (2023, junio 22). Con residuos agroindustriales, el ITM pretende desarrollar materiales para la construcción. https://www.itm.edu.co/noticias-principales/con-residuos-agroindustriales-el-itm-pretende-desarrollar-materiales-para-la-construccion/

Jain, S., & Anal, A. K. (2017). Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. Journal of Food Science and Technology, 54(5), 1062-1072. https://doi.org/10.1007/s13197-017-2530-y DOI: https://doi.org/10.1007/s13197-017-2530-y

Jiang, H., Qin, X., Wang, Q., Xu, Q., Wang, J., Wu, Y., Chen, W., Wang, C., Zhang, T., Xing, D., & Zhang, R. (2021). Application of carbohydrates in approved small molecule drugs: A review. European Journal of Medicinal Chemistry, 223, 113633. https://doi.org/10.1016/j.ejmech.2021.11363 DOI: https://doi.org/10.1016/j.ejmech.2021.113633

Jin, S. K., Choi, J. S., & Yim, D.-G. (2020). Hydrolysis Conditions of Porcine Blood Proteins and Antimicrobial Effects of Their Hydrolysates. Food Science of Animal Resources, 40(2), 172-182. https://doi.org/10.5851/kosfa.2020.e2 DOI: https://doi.org/10.5851/kosfa.2020.e2

Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., & Karathanos, V. T. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Science and Technology, 49(2), 213-216. https://doi.org/10.1016/j.lwt.2011.12.036 DOI: https://doi.org/10.1016/j.lwt.2011.12.036

Kamiloglu, S., Tomas, M., Ozdal, T., Yolci-Omeroglu, P., & Capanoglu, E. (2021). Chapter 2—Bioactive component analysis. En C. M. Galanakis (Ed.), Innovative Food Analysis (pp. 41-65). Academic Press. https://doi.org/10.1016/B978-0-12-819493-5.00002-9 DOI: https://doi.org/10.1016/B978-0-12-819493-5.00002-9

Kang, K. A., Lee, I. K., Zhang, R., Piao, M. J., Kim, K. C., Kim, S. Y., Shin, T., Kim, B. J., Lee, N. H., & Hyun, J. W. (2011). Radioprotective effect of geraniin via the inhibition of apoptosis triggered by y-radiation-induced oxidative stress. Cell Biology and Toxicology, 27(2), 83-94. https://doi.org/10.1007/s10565-010-9172-4 DOI: https://doi.org/10.1007/s10565-010-9172-4

Karwowska, M., Laba, S., & Szczepanski, K. (2021a). Food Loss and Waste in Meat Sector—Why the Consumption Stage Generates the Most Losses? Sustainability, 13(11), Article 11. https://doi.org/10.3390/su13116227

Karwowska, M., Laba, S., & Szczepanski, K. (2021b). Food Loss and Waste in Meat Sector—Why the Consumption Stage Generates the Most Losses? Sustainability, 13(11), Article 11. https://doi.org/10.3390/su13116227 DOI: https://doi.org/10.3390/su13116227

Khalil, A. M., Sabry, O. M., El-Askary, H. I., El Zalabani, S. M., & Fayek, N. M. (2023). Acylated polyphenolics of family Fabaceae: Distribution, chemodiversity, and bioactivity, a comprehensive review. International Journal of Food Science and Technology, 58(3), 1028-1036. https://doi.org/10.1111/ijfs.16271 DOI: https://doi.org/10.1111/ijfs.16271

Knoblich, M., Anderson, B., & Latshaw, D. (2005). Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. Journal of the Science of Food and Agriculture, 85(7), 1166-1170. https://doi.org/10.1002/jsfa.2091 DOI: https://doi.org/10.1002/jsfa.2091

Kumar, K., Yadav, A. N., Kumar, V., Vyas, P., & Dhaliwal, H. S. (2017). Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing, 4(1), 18. https://doi.org/10.1186/s40643-017-0148-6 DOI: https://doi.org/10.1186/s40643-017-0148-6

Kumar, S., Kalita, S., Basumatary, I. B., Kumar, S., Ray, S., & Mukherjee, A. (2024). Avances recientes en las actividades terapéuticas y biológicas del Aloe vera. Biocatalysis and Agricultural Biotechnology, 57, 103084. https://doi.org/10.1016/j.bcab.2024.103084 DOI: https://doi.org/10.1016/j.bcab.2024.103084

Kumar, S., Kushwaha, R., & Verma, M. L. (2020). Chapter 2—Recovery and utilization of bioactives from food processing waste. En M. L. Verma & A. K. Chandel (Eds.), Biotechnological Production of Bioactive Compounds (pp. 37-68). Elsevier. https://doi.org/10.1016/B978-0-444-64323-0.00002-3 DOI: https://doi.org/10.1016/B978-0-444-64323-0.00002-3

Langyan, S., Yadava, P., Sharma, S., Gupta, N. C., Bansal, R., Yadav, R., Kalia, S., & Kumar, A. (2022). Food and nutraceutical functions of sesame oil: An underutilized crop for nutritional and health benefits. Food Chemistry, 389, 132990. https://doi.org/10.1016/j.foodchem.2022.132990 DOI: https://doi.org/10.1016/j.foodchem.2022.132990

Lemes, A. C., de Oliveira Filho, J. G., Fernandes, S. S., Gautério, G. V., & Egea, M. B. (2023). Bioactive Peptides from Protein-Rich Waste. En K. G. Ramawat, J.-M. Mérillon, & J. Arora (Eds.), Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production (pp. 139-166). Springer Nature. https://doi.org/10.1007/978-981-19-8774-8_6 DOI: https://doi.org/10.1007/978-981-19-8774-8_6

Li, K., Ji, M., Sun, X., Shan, J., & Su, G. (2024). Food Polyphenols in Radiation-Related Diseases: The Roles and Possible Mechanisms. Current Nutrition Reports, 13(4), 884-895. https://doi.org/10.1007/s13668-024-00582-4 DOI: https://doi.org/10.1007/s13668-024-00582-4

Li, Y., Li, J., Lin, S.-J., Yang, Z.-S., & Jin, H.-X. (2019). Preparation of Antioxidant Peptide by Microwave- Assisted Hydrolysis of Collagen and Its Protective Effect Against H2O2-Induced Damage of RAW264.7 Cells. Marine Drugs, 17(11), Article 11. https://doi.org/10.3390/md17110642 DOI: https://doi.org/10.3390/md17110642

Liu, Y., Wu, Q., Wu, X., Algharib, S. A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y., & Wang, Y. (2021). Structure, preparation, modification, and bioactivities of b-glucan and mannan from yeast cell wall: A review. International Journal of Biological Macromolecules, 173, 445-456. https://doi.org/10.1016/j.ijbiomac.2021.01.125 DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.125

Lomartire, S., Marques, J. C., & Gonçalves, A. M. M. (2021). An Overview to the Health Benefits of Seaweeds Consumption. Marine Drugs, 19(6), Article 6. https://doi.org/10.3390/md19060341 DOI: https://doi.org/10.3390/md19060341

López, M., Molina, C. C., Ovando, M., Leon, M., López, M., Molin, C. C., Ovando, M., & Leon-Bejarano, M. (2022). Orujo de uva: Más que un residuo, una fuente de compuestos bioactivos. Epistemus (Sonora), 16(33), 115-122. https://doi.org/10.36790/epistemus.v16i33.283 DOI: https://doi.org/10.36790/epistemus.v16i33.283

Lorenzo, J. M., González-Rodríguez, R. M., Sánchez, M., Amado, I. R., & Franco, D. (2013). Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Research International, 54(1), 611-620. https://doi.org/10.1016/j.foodres.2013.07.064 DOI: https://doi.org/10.1016/j.foodres.2013.07.064

Machmudah, S., Zakaria, Winardi, S., Sasaki, M., Goto, M., Kusumoto, N., & Hayakawa, K. (2012). Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. Journal of Food Engineering, 108(2), 290-296. https://doi.org/10.1016/j.jfoodeng.2011.08.012 DOI: https://doi.org/10.1016/j.jfoodeng.2011.08.012

Mala, T., Sadiq, M. B., & Anal, A. K. (2021). Comparative extraction of bromelain and bioactive peptides from pineapple byproducts by ultrasonic- and microwave-assisted extractions. Journal of Food Process Engineering, 44(6), e13709. https://doi.org/10.1111/jfpe.13709 DOI: https://doi.org/10.1111/jfpe.13709

Marabini, L., Melzi, G., Lolli, F., Dell’Agli, M., Piazza, S., Sangiovanni, E., & Marinovich, M. (2020). Efectos del extracto de hojas de Vitis vinifera L. sobre el daño causado por la radiación UV en queratinocitos humanos (HaCaT). Journal of Photochemistry and Photobiology B: Biology, 204, 111810. https://doi.org/10.1016/j.jphotobiol.2020.111810 DOI: https://doi.org/10.1016/j.jphotobiol.2020.111810

Medina, N., Ayora, T., Espinosa, H., Sánchez, A., & Pacheco, N. (2017). Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy, 7(3), Article 3. https://doi.org/10.3390/agronomy7030047 DOI: https://doi.org/10.3390/agronomy7030047

Medina, P. (2024, octubre 16). La mayor central de abastos de Colombia combate el hambre y los desperdicios. El País América. https://elpais.com/america-colombia/2024-10-16/la-mayor-central-de-abastos-de-colombia-combate-el-hambre-y-los-desperdicios.html

Mensah, E. O., Adadi, P., Asase, R. V., Kelvin, O., Mozhdehi, F. J., Amoah, I., & Agyei, D. (2025). Aloe vera and its byproducts as sources of valuable bioactive compounds: Extraction, biological activities, and applications in various food industries. PharmaNutrition, 31, 100436. https://doi.org/10.1016/j.phanu.2025.100436 DOI: https://doi.org/10.1016/j.phanu.2025.100436

Meshginfar, N., Sadeghi Mahoonak, A., Hosseinian, F., Ghorbani, M., & Tsopmo, A. (2018). Production of antioxidant peptide fractions from a by-product of tomato processing: Mass spectrometry identification of peptides and stability to gastrointestinal digestion. Journal of Food Science and Technology, 55(9), 3498-3507. https://doi.org/10.1007/s13197-018-3274-z DOI: https://doi.org/10.1007/s13197-018-3274-z

Moayedi, A., Hashemi, M., & Safari, M. (2016). Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: Optimization of fermentation conditions. Journal of Food Science and Technology, 53(1), 391-400. https://doi.org/10.1007/s13197-015-1965-2 DOI: https://doi.org/10.1007/s13197-015-1965-2

Moayedi, A., Mora, L., Aristoy, M. C., Safari, M., Hashemi, M., & Toldrá, F. (2018). Análisis peptidómico de péptidos antioxidantes e inhibidores de la ECA obtenidos a partir de proteínas de residuos de tomate fermentadas con Bacillus subtilis. Food Chemistry, 250, 180-187. https://doi.org/10.1016/j.foodchem.2018.01.033 DOI: https://doi.org/10.1016/j.foodchem.2018.01.033

Montenegro, M. F., Tapia, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., Cortina, J. L., & Saurina, J. (2021). Polyphenols and their potential role to fight viral diseases: An overview. Science of The Total Environment, 801, 149719. https://doi.org/10.1016/j.scitotenv.2021.149719 DOI: https://doi.org/10.1016/j.scitotenv.2021.149719

Moritz, B., & Tramonte, V. L. C. (2006). Biodisponibilidade do licopeno. Revista de Nutrição, 19, 265-273. https://doi.org/10.1590/S1415-52732006000200013 DOI: https://doi.org/10.1590/S1415-52732006000200013

Nour, A. H., Oluwaseun, A. R., Nour, A. H., Omer, M. S., Ahmed, N., Nour, A. H., Oluwaseun, A. R., Nour, A. H., Omer, M. S., & Ahmed, N. (2021). Microwave-Assisted Extraction of Bioactive Compounds (Review). En Microwave Heating—Electromagnetic Fields Causing Thermal and Non-Thermal Effects. IntechOpen. https://doi.org/10.5772/intechopen.96092 DOI: https://doi.org/10.5772/intechopen.96092

ONU, Organización de las Naciones Unidas. (2012). Pérdidas y desperdicio de alimentos en el mundo—Alcance, causas y prevención. En Pérdidas y desperdicio de alimentos en el mundo. FAO. https://www.fao.org/4/i2697s/i2697s00.htm

ONU, Organización de las Naciones Unidas. (2023). Informe de los Objetivos de Desarrollo Sostenible 2023: Edición especial, Por un plan de rescate para las personas y el planeta (Edición Especial). United Nations. https://doi.org/10.18356/9789210024938 DOI: https://doi.org/10.18356/9789210024938

ONU, Organización de las Naciones Unidas. (2025, marzo 4). Proyecciones de la alimentación y la agricultura hasta 2050 | Estudios de perspectivas mundiales | Organización de las Naciones Unidas para la Alimentación y la Agricultura [Proyecciones de la alimentación y la agricultura hasta 2050]. Estudios de perspectivas globales. https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en

Ozalp, B., Eren, M., Pala, A., Ozmen, I., & Soyer, A. (2011). Effect of plant extracts on lipid oxidation during frozen storage of minced fish muscle. International Journal of Food Science and Technology, 46(4), 724-731. https://doi.org/10.1111/j.1365-2621.2010.02541.x DOI: https://doi.org/10.1111/j.1365-2621.2010.02541.x

Palhares, J. C. P., Oliveira, V. B. V., Freire Junior, M., Cerdeira, A. L., Prado, H. A. do, Julio Cesar Pascale Palhares, C., Vania Beatriz Vasconcelos Oliveira, C.-R., Murillo Freire Junior, C., Antonio Luiz Cerdeira, C., & Hercules Antonio Do Prado, S. (2020). Responsible consumption and production: Contributions of Embrapa. https://agris.fao.org/search/en/providers/122419/records/651196e4ac38d47a7a1eca47

Parra, R. I., Flórez, S., & Rodríguez, D. (2022). La competitividad de la cadena del arroz en Colombia: Un compromiso con el bienestar del agricultor. http://www.repository.fedesarrollo.org.co/handle/11445/4237

Pasini, C. T., Monteiro, P. I., Santos, J. S., Cruz, A. G., Cristina Da Silva, M., & Granato, D. (2019). Phenolic-rich Petit Suisse cheese manufactured with organic Bordeaux grape juice, skin, and seed extract: Technological, sensory, and functional properties. LWT, 115, 108493. https://doi.org/10.1016/j.lwt.2019.108493 DOI: https://doi.org/10.1016/j.lwt.2019.108493

Pataro, G., Carullo, D., Falcone, M., & Ferrari, G. (2020). Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innovative Food Science & Emerging Technologies, 63, 102369. https://doi.org/10.1016/j.ifset.2020.102369 DOI: https://doi.org/10.1016/j.ifset.2020.102369

Patiño-Condia Angie Leonela, Ramón-Valencia Jacipt Alexander, Ramón Jarol Derley. (2023). Utilización del fitoerreactor air-lift, a partir de microalgas Chlorella Vulgaris, para remoción de materia orgánica en aguas residuos urbanas. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 21 N° 2. Pp: 138 – 152. https://doi.org/10.24054/limentech.v21i2.2792 DOI: https://doi.org/10.24054/limentech.v21i2.2792

Paula, L. C. de, Lemes, A. C., Neri, H. F. da S., Ghedini, P. C., Batista, K. de A., & Fernandes, K. F. (2020). Antioxidant and anitoperoxidative effect of polypeptides from common beans (Phaseolus vulgaris, cv BRS Pontal) / Efeito antioxidante e anitoperoxidativo dos polipéptidos do feijão comum (Phaseolus vulgaris, cv BRS Pontal). Brazilian Journal of Development, 6(7), 50569-50580. https://doi.org/10.34117/bjdv6n7-635 DOI: https://doi.org/10.34117/bjdv6n7-635

Peng, X., Ma, J., Cheng, K.-W., Jiang, Y., Chen, F., & Wang, M. (2010). The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry, 119(1), 49-53. https://doi.org/10.1016/j.foodchem.2009.05.083 DOI: https://doi.org/10.1016/j.foodchem.2009.05.083

Prado, D. M. F., Almeida, A. B., Oliveira Filho, J. G., Alves, C. C. F., Egea, M. B., & Lemes, A. C. (2021). Extraction of Bioactive Proteins from Seeds (Corn, Sorghum, and Sunflower) and Sunflower Byproduct: Enzymatic Hydrolysis and Antioxidant Properties. Current Nutrition & Food Science, 17(3), 310-320. https://doi.org/10.2174/1573401316999200731005803 DOI: https://doi.org/10.2174/1573401316999200731005803

Putra, N. R., Rizkiyah, D. N., Abdul Aziz, A. H., Che Yunus, M. A., Veza, I., Harny, I., & Tirta, A. (2023). Waste to Wealth of Apple Pomace Valorization by Past and Current Extraction Processes: A Review. Sustainability, 15(1), Article 1. https://doi.org/10.3390/su15010830 DOI: https://doi.org/10.3390/su15010830

Rajendran, S. R., Mohan, A., Khiari, Z., Udenigwe, C. C., & Mason, B. (2018). Yield, physicochemical, and antioxidant properties of Atlantic salmon visceral hydrolysate: Comparison of lactic acid bacterial fermentation with Flavourzyme proteolysis and formic acid treatment. Journal of Food Processing and Preservation, 42(6), e13620. https://doi.org/10.1111/jfpp.13620 DOI: https://doi.org/10.1111/jfpp.13620

Ramírez, K., Pineda-Hidalgo, K. V., & Rochín-Medina, J. J. (2021). La fermentación de posos de café usados por Bacillus clausii induce la liberación de péptidos potencialmente bioactivos. LWT, 138, 110685. https://doi.org/10.1016/j.lwt.2020.110685 DOI: https://doi.org/10.1016/j.lwt.2020.110685

Rodríguez, A. B. B., Fuertes, M. M. P., Ramírez, G. E. M., Rodríguez, A. B. B., Fuertes, M. M. P., & Ramírez, G. E. M. (2023). Uso potencial de residuos agroindustriales como fuente de compuestos fenólicos con actividad biológica. MediSur, 21(6), 1322-1330.

Romero, M. (2022). Los residuos agroindustriales, una oportunidad para la economía circular. TecnoLógicas, 25(54). https://doi.org/10.22430/22565337.2505 DOI: https://doi.org/10.22430/22565337.2505

Rout, P., Chakraborty, C., & Hossain, S. (2024). Functional characterization of enzyme-hydrolysed soy and whey protein isolates: A comparative approach. Food Chemistry Advances, 5, 100745. https://doi.org/10.1016/j.focha.2024.100745 DOI: https://doi.org/10.1016/j.focha.2024.100745

Ruan, S., Li, Y., Wang, Y., Huang, S., Luo, J., & Ma, H. (2020). Analysis in protein profile, antioxidant activity and structure-activity relationship based on ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis. Ultrasonics Sonochemistry, 64, 104846. https://doi.org/10.1016/j.ultsonch.2019.104846 DOI: https://doi.org/10.1016/j.ultsonch.2019.104846

Sadeghi, A., Hakimzadeh, V., & Karimifar, B. (2017). Microwave Assisted Extraction of Bioactive Compounds from Food: A Review. International Journal of Food Science and Nutrition Engineering. https://www.semanticscholar.org/paper/Microwave-Assisted-Extraction-of-Bioactive-from-A-Sadeghi-Hakimzadeh/0c58335a3efeed68c18676410d3dfecddfdab06d

Salazar-Sánchez Margarita del Rosario, Solanilla-Duque José Fernando. (2023). Tendencias en el aprovechamiento de residuos de mango para la obtención de materiales no alimentarios. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 21 N° 1. Pp: 160 – 179. https://doi.org/10.24054/limentech.v21i2.2742 DOI: https://doi.org/10.24054/limentech.v21i2.2742

San Pablo, B., Mojica, L., & Urías, J. E. (2019). Chia Seed (Salvia hispanica L.) Pepsin Hydrolysates Inhibit Angiotensin-Converting Enzyme by Interacting with its Catalytic Site. Journal of Food Science, 84(5), 1170-1179. https://doi.org/10.1111/1750-3841.14503 DOI: https://doi.org/10.1111/1750-3841.14503

Santana, Á. L., & Meireles, M. A. A. (2023). Extraction of Essential Oils with Supercritical Fluid. En Inamuddin (Ed.), Essential Oils (1.a ed., pp. 671-684). Wiley. https://doi.org/10.1002/9781119829614.ch30 DOI: https://doi.org/10.1002/9781119829614.ch30

Santos, D. I., Saraiva, J. M. A., Vicente, A. A., & Moldao-Martins, M. (2019). 2—Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. En F. J. Barba, J. M. A. Saraiva, G. Cravotto, & J. M. Lorenzo (Eds.), Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds (pp. 23-54). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814174-8.00002-0 DOI: https://doi.org/10.1016/B978-0-12-814174-8.00002-0

Schiebel, C. S., Bueno, L. R., Pargas, R. B., de Mello Braga, L. L. V., da Silva, K. S., Fernandes, A. C. V. U., dos Santos Maia, M. H., de Oliveira, N. M. T., Bach, C., & Maria-Ferreira, D. (2024). Exploring the biological activities and potential therapeutic applications of agro-industrial waste products through non-clinical studies: A systematic review. Science of The Total Environment, 950, 175317. https://doi.org/10.1016/j.scitotenv.2024.175317 DOI: https://doi.org/10.1016/j.scitotenv.2024.175317

Shanthakumar, J., Karthikeyan, A., Bandugula, V. R., & Rajendra Prasad, N. (2012). Ferulic acid, a dietary phenolic acid, modulates radiation effects in Swiss albino mice. European Journal of Pharmacology, 691(1), 268-274. https://doi.org/10.1016/j.ejphar.2012.06.027 DOI: https://doi.org/10.1016/j.ejphar.2012.06.027

Serna F. Tiana, Contreras S. Yucelys, Lozano P. María; Salcedo M. Jairo, Hernández R. Jorge, (2017). Variación del método de secado en la fermentación espontanea de almidón nativo de yuca. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN 1692-7125. Volumen 15 N° 1. Pp:50 -65. DOI: https://doi.org/10.24054/limentech.v15i1.2174 DOI: https://doi.org/10.24054/16927125.v1.n1.2017.2962

Sim, H.-J., Bhattarai, G., Lee, J., Lee, J.-C., & Kook, S.-H. (2019). The Long-lasting Radioprotective Effect of Caffeic Acid in Mice Exposed to Total Body Irradiation by Modulating Reactive Oxygen Species Generation and Hematopoietic Stem Cell Senescence-Accompanied Long-term Residual Bone Marrow Injury. Aging and Disease, 10(6), Article 6. https://doi.org/10.14336/AD.2019.0208 DOI: https://doi.org/10.14336/AD.2019.0208

Singh, A., & Negi, P. S. (2025). Biotechnological Application of Health-Promising Bioactive Compounds. En Biotechnological Intervention in Production of Bioactive Compounds (pp. 73-94). Springer, Cham. https://doi.org/10.1007/978-3-031-76859-0_5 DOI: https://doi.org/10.1007/978-3-031-76859-0_5

Singh, R. D., Muir, J., & Arora, A. (2021). Concentration of xylooligosaccharides with a low degree of polymerization using membranes and their effect on bacterial fermentation. Biofuels, Bioproducts and Biorefining, 15(1), 61-73. https://doi.org/10.1002/bbb.2145 DOI: https://doi.org/10.1002/bbb.2145

Singh, T. P., Siddiqi, R. A., & Sogi, D. S. (2019). Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT, 99, 77-83. https://doi.org/10.1016/j.lwt.2018.09.014 DOI: https://doi.org/10.1016/j.lwt.2018.09.014

Soquetta, M. B., Terra ,Lisiane de Marsillac, & and Bastos, C. P. (2018). Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA - Journal of Food, 16(1), 400-412. https://doi.org/10.1080/19476337.2017.1411978 DOI: https://doi.org/10.1080/19476337.2017.1411978

Soto Toloza, E. P., Acevedo, S. N. M., & Caballero Pérez, L. A. (2023). Efecto de la sustitución parcial de harina de trigo (Triticum Vulgare) por harina de garbanzo (Cicer Arietinum L) en las características sensoriales de una galleta dulce. REVISTA AMBIENTAL AGUA, AIRE Y SUELO, 14(1), Article 1. https://doi.org/10.24054/raaas.v14i1.2747 DOI: https://doi.org/10.24054/raaas.v14i1.2747

Soto Toloza, E. P., & Caballero Pérez, L. A. (2021). Evaluación de la calidad de café en taza de una muestra comercial de la region frente a una muestra comercial de alta calidad tipo exportación. @limentech, Ciencia y Tecnología Alimentaria, 19(1), Article 1. https://doi.org/10.24054/limentech.v19i1.1408 DOI: https://doi.org/10.24054/limentech.v19i1.1408

Tacias, V. G., Castañeda, D., Morellon, R., Tavano, O., Berenguer-Murcia, Á., Vela-Gutiérrez, G., Rather, I. A., & Fernandez-Lafuente, R. (2021). Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. International Journal of Biological Macromolecules, 184, 415-428. https://doi.org/10.1016/j.ijbiomac.2021.06.076 DOI: https://doi.org/10.1016/j.ijbiomac.2021.06.076

Tesfay, S., & Teferi, M. (2017). Assessment of fish post-harvest losses in Tekeze dam and Lake Hashenge fishery associations: Northern Ethiopia. Agriculture & Food Security, 6(1), Article 1. https://doi.org/10.1186/s40066-016-0081-5 DOI: https://doi.org/10.1186/s40066-016-0081-5

Tosh, S. M., Brummer, Y., Miller, S. S., Regand, A., Defelice, C., Duss, R., Wolever, T. M. S., & Wood, P. J. (2010). Processing Affects the Physicochemical Properties of b-Glucan in Oat Bran Cereal. Journal of Agricultural and Food Chemistry, 58(13), 7723-7730. https://doi.org/10.1021/jf904553u DOI: https://doi.org/10.1021/jf904553u

Trombino, S., Cassano, R., Procopio, D., Di Gioia, M. L., & Barone, E. (2021). Valorization of Tomato Waste as a Source of Carotenoids. Molecules (Basel, Switzerland), 26(16), 5062. https://doi.org/10.3390/molecules26165062 DOI: https://doi.org/10.3390/molecules26165062

Ulug, E., & Pinar, A. A. (2023). A New Approach to Polycystic Ovary Syndrome and Related Cardio-metabolic Risk Factors: Dietary Polyphenols. Current Nutrition Reports, 12(3), 508-526. https://doi.org/10.1007/s13668-023-00488-7 DOI: https://doi.org/10.1007/s13668-023-00488-7

Universidad E.I.A. (2020). Investigación pretende reutilizar 600 toneladas de residuos agroindustriales cada año en Urabá. EIA. https://www.eia.edu.co/portfolio/noticias-eia-investigacion-pretende-reutilizar-600-toneladas-de-residuos-agroindustriales-cada-ano-en-uraba/

Urbonaviciene, D., & Viskelis, P. (2017). Composición de isómeros de cis -licopeno en subproductos de tomate extraídos con CO2 supercrítico. LWT - Food Science and Technology, 85, 517-523. https://doi.org/10.1016/j.lwt.2017.03.034 DOI: https://doi.org/10.1016/j.lwt.2017.03.034

Wang, J., Li, T., Feng, J., Li, L., Wang, R., Cheng, H., & Yuan, Y. (2018). El kaempferol protege contra la mortalidad y el daño inducidos por la radiación gamma al inhibir el estrés oxidativo y modular las moléculas apoptóticas in vivo e vitro. Environmental Toxicology and Pharmacology, 60, 128-137. https://doi.org/10.1016/j.etap.2018.04.014 DOI: https://doi.org/10.1016/j.etap.2018.04.014

Wang, L., Li, T., Wu, C., Fan, G., Zhou, D., & Li, X. (2025). Unlocking the potential of plant polyphenols: Advances in extraction, antibacterial mechanisms, and future applications. Food Science and Biotechnology, 34(6), 1235-1259. https://doi.org/10.1007/s10068-024-01727-5 DOI: https://doi.org/10.1007/s10068-024-01727-5

Wisuthiphaet, N., Klinchan, S., & Kongruang, S. (2016). Fish Protein Hydrolysate Production by Acid and Enzymatic Hydrolysis. Applied Science and Engineering Progress, 9(4), Article 4. https://ph02.tci-thaijo.org/index.php/ijast/article/view/72566 DOI: https://doi.org/10.14416/j.ijast.2016.11.004

Wong, J. E., Aguilar, P., Veana, F., & Muñiz-Marquez, D. B. (2020). Impacto de las tecnologías de extracción verdes para la obtención de compuestos bioactivos de los residuos de frutos cítricos. TIP Revista Especializada en Ciencias Químico-Biológicas, 23(1), 1-11. DOI: https://doi.org/10.22201/fesz.23958723e.2020.0.255

Wong, J. E., Muñiz, D. B., Martínez, G. C. G., Belmares, R. E., & Aguilar, C. N. (2015). Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrasonics Sonochemistry, 22, 474-481. https://doi.org/10.1016/j.ultsonch.2014.06.001 DOI: https://doi.org/10.1016/j.ultsonch.2014.06.001

Xue, Q., Chen, Q., Wang, M., & Liu, L. (2022). [Radioprotective effects of gallic acid on bone marrow cells in mice]. Wei sheng yan jiu = Journal of hygiene research, 51(1), 91-98. https://doi.org/10.19813/j.cnki.weishengyanjiu.2022.01.016

Yousefi, M., Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Wysokowski, M., Jesionowski, T., Ehrlich, H., & Mirsadeghi, S. (2019). Supercritical fluid extraction of essential oils. TrAC Trends in Analytical Ch DOI: https://doi.org/10.1016/j.trac.2019.05.038

Publicado

2025-02-25

Cómo citar

Soto Toloza, E. P., Caballero Pérez, L. A., & Abril Florez, J. L. (2025). Obtención de compuestos bioactivos a partir de residuos agroindustriales: Una revisión. REVISTA AMBIENTAL AGUA, AIRE Y SUELO, 16(1), 1–30. https://doi.org/10.24054/raaas.v16i1.3666

Número

Sección

Artículos