Obtaining Bioactive Compounds From Agro-Industrial Waste: A Review
Obtaining Bioactive Compounds From Agro-Industrial Waste: A Review
Keywords:
Bioactive compounds, agroindustrial, health benefitsAbstract
Bioactive compounds may offer health benefits beyond their nutritional value and are incorporated or originally present in food matrices. However, components of bioactive compounds are mostly found in by-products of the agro-industrial sector, generating a large volume of agro-industrial waste along the food supply chain, and if not properly managed, can represent a threat to the environment, profitability and the proper nutritional delivery of food to consumers. Therefore, it is important to develop methods to process these agro-industrial by-products, including biological ones. These can improve the recovery of bioactive compounds, facilitating their use in the food and pharmaceutical industries. Compared to non-biological processes, biological ones have more advantages, including the production of high-quality bioactive extracts, as well as the extraction of less toxic and more environmentally friendly compounds. In biological methodologies, obtaining bioactive substances through enzymes, as well as fermentation, are highlighted as key for the production of bioactive substances from various agro-industrial residues. This article seeks to describe in detail the most relevant and abundant bioactive substances in agro-industrial by-products, as well as the biological methodologies for their extraction. It also provides information to improve the use of these bioactive substances, especially in the food and pharmaceutical industries.
Downloads
References
Acosta, D. M. L. C. (2019). Polifenoles: compuestos bioactivos con efectos benéficos en la prevención de diabetes tipo 2. REDCieN, 1, 6-6.
Adetunji, C. O., Akram, M., Mtewa, A. G., Jeevanandam, J., Egbuna, C., Ogodo, A. C., Gautam, A. K., Gupta, A., Onyekere, P. F., Tupas, G. D., Ezzat, S. M., Pareek, S., Tijjani, H., Sharif, N., Ezhilarasan, D., Hassan, S., Sagar, N. A., El Sayed, A. M., Mehdizadeh, M., … Olatunde, A. (2021). Chapter 18—Biochemical and pharmacotherapeutic potentials of lycopene in drug discovery. En C. Egbuna, A. P. Mishra, & M. R. Goyal (Eds.), Preparation of Phytopharmaceuticals for the Management of Disorders (pp. 307-360). Academic Press. https://doi.org/10.1016/B978-0-12-820284-5.00015-0
Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U. ur, Soares, B. C. V., Souza, S. L. Q., Pimentel, T. C., Scudino, H., Guimarães, J. T., Esmerino, E. A., Freitas, M. Q., Almada, R. B., Vendramel, S. M. R., Silva, M. C., & Cruz, A. G. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science & Technology, 88, 361-372. https://doi.org/10.1016/j.tifs.2019.04.003
Ahmed, R., & Chun, B.-S. (2018). Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. The Journal of Supercritical Fluids, 141, 88-96. https://doi.org/10.1016/j.supflu.2018.03.006
Al Mamoori, F., & Al Janabi, R. (2018). Recent advances in microwave-assisted extraction (mae) of medicinal plants: a review. International Research Journal Of Pharmacy, 9(6), 22-29. https://doi.org/10.7897/2230-8407.09684
Ameer, K., Shahbaz, H. M., & Kwon, J. (2017). Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295-315. https://doi.org/10.1111/1541-4337.12253
Anarjan, N., & Jouyban, A. (2017). Preparation of lycopene nanodispersions from tomato processing waste: Effects of organic phase composition. Food and Bioproducts Processing, 103, 104-113. https://doi.org/10.1016/j.fbp.2017.03.003
Baraniak, J., & Kania-Dobrowolska, M. (2022). The Dual Nature of Amaranth—Functional Food and Potential Medicine. Foods, 11(4), 618. https://doi.org/10.3390/foods11040618
Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607. https://doi.org/10.1016/j.mcat.2019.110607
Bedoic, R., Cosic, B., & Duic, N. (2019). Technical potential and geographic distribution of agricultural residues, co-products and by-products in the European Union. Science of The Total Environment, 686, 568-579. https://doi.org/10.1016/j.scitotenv.2019.05.219
Begum, N., Rajendra Prasad,N., Kanimozhi ,G., & and Agilan, B. (2022). Apigenin prevents gamma radiation-induced gastrointestinal damages by modulating inflammatory and apoptotic signalling mediators. Natural Product Research, 36(6), 1631-1635. https://doi.org/10.1080/14786419.2021.1893316
Ben Hamad Bouhamed, S., Krichen, F., & Kechaou, N. (2020). Feather Protein Hydrolysates: A Study of Physicochemical, Functional Properties and Antioxidant Activity. Waste and Biomass Valorization, 11(1), 51-62. https://doi.org/10.1007/s12649-018-0451-2
Benkovic, V., Horvat Knezevic, A., Dikic, D., Lisicic, D., Orsolic, N., Basic, I., Kosalec, I., & Kopjar, N. (2008). Efectos radioprotectores del propoleo y la quercetina en ratones irradiados con rayos y evaluados mediante el ensayo del cometa alcalino. Phytomedicine, 15(10), 851-858. https://doi.org/10.1016/j.phymed.2008.02.010
Braga, A. R. C., Silva, M. F., Oliveira, J. V., Treichel, H., & Kalil, S. J. (2014). A New approach to evaluate immobilization of B-galactosidase on eupergitc: structural, kinetic, and thermal characterization. Química Nova. https://doi.org/10.5935/0100-4042.20140128
Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149-161. https://doi.org/10.1016/j.foodres.2015.01.016
Caballero-Pérez LA, Tejedor-Arias R, Salas-Osorio EJ. (2023a). Survival of a mixed culture of microencapsulated probiotic strains against the gastrointestinal barrier in vitro. ISSN2521-9715. Revista Científica de la Facultad de Ciencias Veterinarias – septiembre 2023. 33(2) :1-9. https://produccioncientificaluz.org/index.php/cientifica.
Caballero-Pérez LA, Hernández-Monzón A, Tejedor-Arias R, Montes.-Montes EJ. (2023b). Caracterización de mezclas de materiales poliméricos naturales para encapsulación, mediante secado por aspersión. Rev Colomb Tecnol Avanz. 41(1):1-12. Recuperado a partir de https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2412.
Calsada Uribe Nataly Jullyet.; Caballero Pérez Luz Alba; Soto Tolosa Erika Paola. (2022). Elaboración de una barra proteica con recubrimiento de un gel energético a base de café. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 20 N° 2. Pp: 5 - 23. DOI: https://doi.org/10.24054/limentech.v20i2.2282.
Caseiro, M., Ascenso, A., Costa, A., Creagh-Flynn, J., Johnson, M., & Simões, S. (2020). Lycopene in human health. LWT, 127, 109323. https://doi.org/10.1016/j.lwt.2020.109323
Chaudhary, P., Shukla, S. K., Kumar, I. P., Namita, I., Afrin, F., & Sharma, R. K. (2006). Radioprotective properties of apple polyphenols: An in vitro study. Molecular and Cellular Biochemistry, 288(1), 37-46. https://doi.org/10.1007/s11010-005-9116-0
Chauhan, C., Dhir, A., Akram, M. U., & Salo, J. (2021). Food loss and waste in food supply chains. A systematic literature review and framework development approach. Journal of Cleaner Production, 295, 126438. https://doi.org/10.1016/j.jclepro.2021.126438
Chen, P.-J., Tseng, J.-K., Lin, Y.-L., Wu, Y.-H. S., Hsiao, Y.-T., Chen, J.-W., & Chen, Y.-C. (2017). Protective Effects of Functional Chicken Liver Hydrolysates against Liver Fibrogenesis: Antioxidation, Anti-inflammation, and Antifibrosis. Journal of Agricultural and Food Chemistry, 65(24), 4961-4969. https://doi.org/10.1021/acs.jafc.7b01403
Chiriac, E. R., Chitescu, C. L., Geana, E.-I., Gird, C. E., Socoteanu, R. P., & Boscencu, R. (2021). Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices—A Review. Separations, 8(5), Article 5. https://doi.org/10.3390/separations8050065
Cury, K. C., Aguas, Y. A., Martínez, A. M., Olivero, R. O., & Chams, L. C. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), Article S1. https://doi.org/10.24188/recia.v9.nS.2017.530
Da Silva Bambirra Alves, F. E., Carpiné, D., Teixeira, G. L., Goedert, A. C., de Paula Scheer, A., & Ribani, R. H. (2021). Valorization of an Abundant Slaughterhouse By-product as a Source of Highly Technofunctional and Antioxidant Protein Hydrolysates. Waste and Biomass Valorization, 12(1), 263-279. https://doi.org/10.1007/s12649-020-00985-8
Da Silva Guedes, J., Pimentel, T. C., Diniz-Silva, H. T., Tayse da Cruz Almeida, E., Tavares, J. F., Leite de Souza, E., Garcia, E. F., & Magnani, M. (2019). Protective effects of b-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic lactobacilli. LWT, 116, 108496. https://doi.org/10.1016/j.lwt.2019.108496
Dabrowska, M., Sommer, A., Sinkiewicz, I., Taraszkiewicz, A., & Staroszczyk, H. (2022). An optimal designed experiment for the alkaline hydrolysis of feather keratin. Environmental Science and Pollution Research, 29(16), 24145-24154. https://doi.org/10.1007/s11356-021-17649-2
Dave, D., & Routray, W. (2018). Current scenario of Canadian fishery and corresponding underutilized species and fishery byproducts: A potential source of omega-3 fatty acids. Journal of Cleaner Production, 180, 617-641. https://doi.org/10.1016/j.jclepro.2018.01.091
Díaz, E., Cerón, G. I., & Vargas, E. A. (2023). Encapsulación de compuestos bioactivos: Una revisión sistemática. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10(20), Article 20. https://doi.org/10.29057/icbi.v10i20.9575
De la Espriella Angarita Stephanie, Torrenegra Alarcón Milady, León Méndez Glicerio. (2023). Guinda (Pronus Ceresus) como fuente de moléculas bioactivas. Revisión. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 21 N° 1. Pp: 124 – 136. https://doi.org/10.24054/limentech.v21i1.2365
Di-Medeiros Leal, M. C. B., Ribeiro, G. O., Rezende Ribeiro, M. L., Ferreira, A. G., Cavalcante Braga, A. R., Egea, M. B., & Lemes, A. C. (2022). 16—Analysis and characterization of starches from alternative sources. En S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, & M. Ramesh (Eds.), Biodegradable Polymers, Blends and Composites (pp. 465-488). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-823791-5.00025-9
Dora, M., Wesana, J., Gellynck, X., Seth, N., Dey, B., & Steur, H. (2020). Importance of sustainable operations in food loss: Evidence from the Belgian food processing industry. Annals of Operations Research, 290(1), 47-72.
Du, B., Zhu, F., & Xu, B. (2014). b-Glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. Journal of Cereal Science, 59(1), 95-100. https://doi.org/10.1016/j.jcs.2013.11.004
Equipos y laboratorio de Colombia. (2025, marzo 18). Elmasonic baño para limpieza de tamices por ultrasonido—S 50 R (Colombia) [Text]. Equipos y laboratorio de Colombia; equiposylaboratorio.com. https://www.equiposylaboratorio.com/portal/productos/elmasonic-bano-para-limpieza-de-tamices-por-ultrasonido-s-50-r
Fathi, P., Moosavi-Nasab, M., Mirzapour-Kouhdasht, A., & Khalesi, M. (2021). Generation of hydrolysates from rice bran proteins using a combined ultrasonication-Alcalase hydrolysis treatment. Food Bioscience, 42, 101110. https://doi.org/10.1016/j.fbio.2021.101110
Fernández, Y., Sotto, K. D., Vargas, L. A., Fernández, Y., Sotto, K. D., & Vargas-Marín, L. A. (2020). Impactos ambientales de la producción del café, y el aprovechamiento sustentable de los residuos generados. Producción + Limpia, 15(1), 93-110. https://doi.org/10.22507/pml.v15n1a7
Fidelis, M., Oliveira, S. M. de, Santos, J. S., Escher, G. B., Rocha, R. S., Cruz, A. G., Carmo, M. A. V. do, Azevedo, L., Kaneshima, T., Oh, W. Y., Shahidi, F., & Granato, D. (2020). From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. Journal of Dairy Science, 103(2), 1131-1140. https://doi.org/10.3168/jds.2019-17173
Fortunati, E., Luzi, F., Puglia, D., & Torre, L. (2016). Chapter 1—Extraction of Lignocellulosic Materials From Waste Products. En D. Puglia, E. Fortunati, & J. M. Kenny (Eds.), Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements (pp. 1-38). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-44248-0.00001-8
Franco, D., Munekata, P. E. S., Agregán, R., Bermúdez, R., López-Pedrouso, M., Pateiro, M., & Lorenzo, J. M. (2020). Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants, 9(2), Article 2. https://doi.org/10.3390/antiox9020090
Gan, R.-Y., Chan, C.-L., Yang, Q.-Q., Li, H.-B., Zhang, D., Ge, Y.-Y., Gunaratne, A., Ge, J., & Corke, H. (2019). 9—Bioactive compounds and beneficial functions of sprouted grains. En H. Feng, B. Nemzer, & J. W. DeVries (Eds.), Sprouted Grains (pp. 191-246). AACC International Press. https://doi.org/10.1016/B978-0-12-811525-1.00009-9
García, K. J. P., Toloza, E. P. S., Leal, D. Z. H., & Pérez, L. A. C. (2023). Características sensoriales de una torta adicionada con harina de semilla de fenogreco (Trigonella foenum-graecum L.). Revista Ambiental Agua, Aire y Suelo, 14(2), Article 2. https://doi.org/10.24054/raaas.v14i2.2784
Garzón, A. G., Veras, F. F., Brandelli, A., & Drago, S. R. (2022). Purificación, identificación y estudios in silico de péptidos antioxidantes, antidiabetogénicos y antibacterianos obtenidos a partir de hidrolizado de grano gastado de sorgo. LWT, 153, 112414. https://doi.org/10.1016/j.lwt.2021.112414
Gildawie, K. R., Galli, R. L., Shukitt-Hale, B., & Carey, A. N. (2018). Protective Effects of Foods Containing Flavonoids on Age-Related Cognitive Decline. Current Nutrition Reports, 7(2), 39-48. https://doi.org/10.1007/s13668-018-0227-0
Gonzalez, L. V. P., Gómez, S. P. M., & Abad, P. A. G. (2017). Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2), Article 2. https://doi.org/10.22490/21456453.2040
Hassan, G., Shabbir, M. A., Ahmad, F., Pasha, I., Aslam, N., Ahmad, T., Rehman, A., Manzoor, M. F., Inam-Ur-Raheem, M., & Aadil, R. M. (2021a). Cereal processing waste, an environmental impact and value addition perspectives: A comprehensive treatise. Food Chemistry, 363, 130352. https://doi.org/10.1016/j.foodchem.2021.130352
Hassan, G., Shabbir, M. A., Ahmad, F., Pasha, I., Aslam, N., Ahmad, T., Rehman, A., Manzoor, M. F., Inam-Ur-Raheem, M., & Aadil, R. M. (2021b). Cereal processing waste, an environmental impact and value addition perspectives: A comprehensive treatise. Food Chemistry, 363, 130352. https://doi.org/10.1016/j.foodchem.2021.130352
Hatami, T., Meireles, M. A. A., & Ciftci, O. N. (2019). Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modeling and optimization. Journal of Food Engineering, 241, 18-25. https://doi.org/10.1016/j.jfoodeng.2018.07.036
Hemker, A. K., Nguyen, L. T., Karwe, M., & Salvi, D. (2020). Efectos de la hidrólisis enzimática asistida por presión sobre las propiedades funcionales y bioactivas de los hidrolizados proteicos derivados de la tilapia ( Oreochromis niloticus ). LWT, 122, 109003. https://doi.org/10.1016/j.lwt.2019.109003
Hernández, E., De Jesús, E., & Zartha Sossa, J. W. (2021). Recovery of Biomolecules from Agroindustry by Solid-Liquid Enzyme-Assisted Extraction: A Review. Food Analytical Methods, 14(8), 1744-1777. https://doi.org/10.1007/s12161-021-01974-w
Hillman, G. G., Singh-Gupta, V., Runyan, L., Yunker, C. K., Rakowski, J. T., Sarkar, F. H., Miller, S., Gadgeel, S. M., Sethi, S., Joiner, M. C., & Konski, A. A. (2011). Soy isoflavones radiosensitize lung cancer while mitigating normal tissue injury. Radiotherapy and Oncology, 101(2), 329-336. https://doi.org/10.1016/j.radonc.2011.10.020
Hosseinimehr, S. J., Mahmoudzadeh, A., Ahmadi, A., Mohamadifar, S., & Akhlaghpoor, S. (2009). Radioprotective effects of hesperidin against genotoxicity induced by y-irradiation in human lymphocytes. Mutagenesis, 24(3), 233-235. https://doi.org/10.1093/mutage/gep001
Instituto Tecnológico Metropolitano. (2023, junio 22). Con residuos agroindustriales, el ITM pretende desarrollar materiales para la construcción. https://www.itm.edu.co/noticias-principales/con-residuos-agroindustriales-el-itm-pretende-desarrollar-materiales-para-la-construccion/
Jain, S., & Anal, A. K. (2017). Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. Journal of Food Science and Technology, 54(5), 1062-1072. https://doi.org/10.1007/s13197-017-2530-y
Jiang, H., Qin, X., Wang, Q., Xu, Q., Wang, J., Wu, Y., Chen, W., Wang, C., Zhang, T., Xing, D., & Zhang, R. (2021). Application of carbohydrates in approved small molecule drugs: A review. European Journal of Medicinal Chemistry, 223, 113633. https://doi.org/10.1016/j.ejmech.2021.11363
Jin, S. K., Choi, J. S., & Yim, D.-G. (2020). Hydrolysis Conditions of Porcine Blood Proteins and Antimicrobial Effects of Their Hydrolysates. Food Science of Animal Resources, 40(2), 172-182. https://doi.org/10.5851/kosfa.2020.e2
Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., & Karathanos, V. T. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Science and Technology, 49(2), 213-216. https://doi.org/10.1016/j.lwt.2011.12.036
Kamiloglu, S., Tomas, M., Ozdal, T., Yolci-Omeroglu, P., & Capanoglu, E. (2021). Chapter 2—Bioactive component analysis. En C. M. Galanakis (Ed.), Innovative Food Analysis (pp. 41-65). Academic Press. https://doi.org/10.1016/B978-0-12-819493-5.00002-9
Kang, K. A., Lee, I. K., Zhang, R., Piao, M. J., Kim, K. C., Kim, S. Y., Shin, T., Kim, B. J., Lee, N. H., & Hyun, J. W. (2011). Radioprotective effect of geraniin via the inhibition of apoptosis triggered by y-radiation-induced oxidative stress. Cell Biology and Toxicology, 27(2), 83-94. https://doi.org/10.1007/s10565-010-9172-4
Karwowska, M., Laba, S., & Szczepanski, K. (2021a). Food Loss and Waste in Meat Sector—Why the Consumption Stage Generates the Most Losses? Sustainability, 13(11), Article 11. https://doi.org/10.3390/su13116227
Karwowska, M., Laba, S., & Szczepanski, K. (2021b). Food Loss and Waste in Meat Sector—Why the Consumption Stage Generates the Most Losses? Sustainability, 13(11), Article 11. https://doi.org/10.3390/su13116227
Khalil, A. M., Sabry, O. M., El-Askary, H. I., El Zalabani, S. M., & Fayek, N. M. (2023). Acylated polyphenolics of family Fabaceae: Distribution, chemodiversity, and bioactivity, a comprehensive review. International Journal of Food Science and Technology, 58(3), 1028-1036. https://doi.org/10.1111/ijfs.16271
Knoblich, M., Anderson, B., & Latshaw, D. (2005). Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. Journal of the Science of Food and Agriculture, 85(7), 1166-1170. https://doi.org/10.1002/jsfa.2091
Kumar, K., Yadav, A. N., Kumar, V., Vyas, P., & Dhaliwal, H. S. (2017). Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing, 4(1), 18. https://doi.org/10.1186/s40643-017-0148-6
Kumar, S., Kalita, S., Basumatary, I. B., Kumar, S., Ray, S., & Mukherjee, A. (2024). Avances recientes en las actividades terapéuticas y biológicas del Aloe vera. Biocatalysis and Agricultural Biotechnology, 57, 103084. https://doi.org/10.1016/j.bcab.2024.103084
Kumar, S., Kushwaha, R., & Verma, M. L. (2020). Chapter 2—Recovery and utilization of bioactives from food processing waste. En M. L. Verma & A. K. Chandel (Eds.), Biotechnological Production of Bioactive Compounds (pp. 37-68). Elsevier. https://doi.org/10.1016/B978-0-444-64323-0.00002-3
Langyan, S., Yadava, P., Sharma, S., Gupta, N. C., Bansal, R., Yadav, R., Kalia, S., & Kumar, A. (2022). Food and nutraceutical functions of sesame oil: An underutilized crop for nutritional and health benefits. Food Chemistry, 389, 132990. https://doi.org/10.1016/j.foodchem.2022.132990
Lemes, A. C., de Oliveira Filho, J. G., Fernandes, S. S., Gautério, G. V., & Egea, M. B. (2023). Bioactive Peptides from Protein-Rich Waste. En K. G. Ramawat, J.-M. Mérillon, & J. Arora (Eds.), Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production (pp. 139-166). Springer Nature. https://doi.org/10.1007/978-981-19-8774-8_6
Li, K., Ji, M., Sun, X., Shan, J., & Su, G. (2024). Food Polyphenols in Radiation-Related Diseases: The Roles and Possible Mechanisms. Current Nutrition Reports, 13(4), 884-895. https://doi.org/10.1007/s13668-024-00582-4
Li, Y., Li, J., Lin, S.-J., Yang, Z.-S., & Jin, H.-X. (2019). Preparation of Antioxidant Peptide by Microwave- Assisted Hydrolysis of Collagen and Its Protective Effect Against H2O2-Induced Damage of RAW264.7 Cells. Marine Drugs, 17(11), Article 11. https://doi.org/10.3390/md17110642
Liu, Y., Wu, Q., Wu, X., Algharib, S. A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y., & Wang, Y. (2021). Structure, preparation, modification, and bioactivities of b-glucan and mannan from yeast cell wall: A review. International Journal of Biological Macromolecules, 173, 445-456. https://doi.org/10.1016/j.ijbiomac.2021.01.125
Lomartire, S., Marques, J. C., & Gonçalves, A. M. M. (2021). An Overview to the Health Benefits of Seaweeds Consumption. Marine Drugs, 19(6), Article 6. https://doi.org/10.3390/md19060341
López, M., Molina, C. C., Ovando, M., Leon, M., López, M., Molin, C. C., Ovando, M., & Leon-Bejarano, M. (2022). Orujo de uva: Más que un residuo, una fuente de compuestos bioactivos. Epistemus (Sonora), 16(33), 115-122. https://doi.org/10.36790/epistemus.v16i33.283
Lorenzo, J. M., González-Rodríguez, R. M., Sánchez, M., Amado, I. R., & Franco, D. (2013). Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Research International, 54(1), 611-620. https://doi.org/10.1016/j.foodres.2013.07.064
Machmudah, S., Zakaria, Winardi, S., Sasaki, M., Goto, M., Kusumoto, N., & Hayakawa, K. (2012). Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. Journal of Food Engineering, 108(2), 290-296. https://doi.org/10.1016/j.jfoodeng.2011.08.012
Mala, T., Sadiq, M. B., & Anal, A. K. (2021). Comparative extraction of bromelain and bioactive peptides from pineapple byproducts by ultrasonic- and microwave-assisted extractions. Journal of Food Process Engineering, 44(6), e13709. https://doi.org/10.1111/jfpe.13709
Marabini, L., Melzi, G., Lolli, F., Dell’Agli, M., Piazza, S., Sangiovanni, E., & Marinovich, M. (2020). Efectos del extracto de hojas de Vitis vinifera L. sobre el daño causado por la radiación UV en queratinocitos humanos (HaCaT). Journal of Photochemistry and Photobiology B: Biology, 204, 111810. https://doi.org/10.1016/j.jphotobiol.2020.111810
Medina, N., Ayora, T., Espinosa, H., Sánchez, A., & Pacheco, N. (2017). Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy, 7(3), Article 3. https://doi.org/10.3390/agronomy7030047
Medina, P. (2024, octubre 16). La mayor central de abastos de Colombia combate el hambre y los desperdicios. El País América. https://elpais.com/america-colombia/2024-10-16/la-mayor-central-de-abastos-de-colombia-combate-el-hambre-y-los-desperdicios.html
Mensah, E. O., Adadi, P., Asase, R. V., Kelvin, O., Mozhdehi, F. J., Amoah, I., & Agyei, D. (2025). Aloe vera and its byproducts as sources of valuable bioactive compounds: Extraction, biological activities, and applications in various food industries. PharmaNutrition, 31, 100436. https://doi.org/10.1016/j.phanu.2025.100436
Meshginfar, N., Sadeghi Mahoonak, A., Hosseinian, F., Ghorbani, M., & Tsopmo, A. (2018). Production of antioxidant peptide fractions from a by-product of tomato processing: Mass spectrometry identification of peptides and stability to gastrointestinal digestion. Journal of Food Science and Technology, 55(9), 3498-3507. https://doi.org/10.1007/s13197-018-3274-z
Moayedi, A., Hashemi, M., & Safari, M. (2016). Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: Optimization of fermentation conditions. Journal of Food Science and Technology, 53(1), 391-400. https://doi.org/10.1007/s13197-015-1965-2
Moayedi, A., Mora, L., Aristoy, M. C., Safari, M., Hashemi, M., & Toldrá, F. (2018). Análisis peptidómico de péptidos antioxidantes e inhibidores de la ECA obtenidos a partir de proteínas de residuos de tomate fermentadas con Bacillus subtilis. Food Chemistry, 250, 180-187. https://doi.org/10.1016/j.foodchem.2018.01.033
Montenegro, M. F., Tapia, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., Cortina, J. L., & Saurina, J. (2021). Polyphenols and their potential role to fight viral diseases: An overview. Science of The Total Environment, 801, 149719. https://doi.org/10.1016/j.scitotenv.2021.149719
Moritz, B., & Tramonte, V. L. C. (2006). Biodisponibilidade do licopeno. Revista de Nutrição, 19, 265-273. https://doi.org/10.1590/S1415-52732006000200013
Nour, A. H., Oluwaseun, A. R., Nour, A. H., Omer, M. S., Ahmed, N., Nour, A. H., Oluwaseun, A. R., Nour, A. H., Omer, M. S., & Ahmed, N. (2021). Microwave-Assisted Extraction of Bioactive Compounds (Review). En Microwave Heating—Electromagnetic Fields Causing Thermal and Non-Thermal Effects. IntechOpen. https://doi.org/10.5772/intechopen.96092
ONU, Organización de las Naciones Unidas. (2012). Pérdidas y desperdicio de alimentos en el mundo—Alcance, causas y prevención. En Pérdidas y desperdicio de alimentos en el mundo. FAO. https://www.fao.org/4/i2697s/i2697s00.htm
ONU, Organización de las Naciones Unidas. (2023). Informe de los Objetivos de Desarrollo Sostenible 2023: Edición especial, Por un plan de rescate para las personas y el planeta (Edición Especial). United Nations. https://doi.org/10.18356/9789210024938
ONU, Organización de las Naciones Unidas. (2025, marzo 4). Proyecciones de la alimentación y la agricultura hasta 2050 | Estudios de perspectivas mundiales | Organización de las Naciones Unidas para la Alimentación y la Agricultura [Proyecciones de la alimentación y la agricultura hasta 2050]. Estudios de perspectivas globales. https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en
Ozalp, B., Eren, M., Pala, A., Ozmen, I., & Soyer, A. (2011). Effect of plant extracts on lipid oxidation during frozen storage of minced fish muscle. International Journal of Food Science and Technology, 46(4), 724-731. https://doi.org/10.1111/j.1365-2621.2010.02541.x
Palhares, J. C. P., Oliveira, V. B. V., Freire Junior, M., Cerdeira, A. L., Prado, H. A. do, Julio Cesar Pascale Palhares, C., Vania Beatriz Vasconcelos Oliveira, C.-R., Murillo Freire Junior, C., Antonio Luiz Cerdeira, C., & Hercules Antonio Do Prado, S. (2020). Responsible consumption and production: Contributions of Embrapa. https://agris.fao.org/search/en/providers/122419/records/651196e4ac38d47a7a1eca47
Parra, R. I., Flórez, S., & Rodríguez, D. (2022). La competitividad de la cadena del arroz en Colombia: Un compromiso con el bienestar del agricultor. http://www.repository.fedesarrollo.org.co/handle/11445/4237
Pasini, C. T., Monteiro, P. I., Santos, J. S., Cruz, A. G., Cristina Da Silva, M., & Granato, D. (2019). Phenolic-rich Petit Suisse cheese manufactured with organic Bordeaux grape juice, skin, and seed extract: Technological, sensory, and functional properties. LWT, 115, 108493. https://doi.org/10.1016/j.lwt.2019.108493
Pataro, G., Carullo, D., Falcone, M., & Ferrari, G. (2020). Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innovative Food Science & Emerging Technologies, 63, 102369. https://doi.org/10.1016/j.ifset.2020.102369
Patiño-Condia Angie Leonela, Ramón-Valencia Jacipt Alexander, Ramón Jarol Derley. (2023). Utilización del fitoerreactor air-lift, a partir de microalgas Chlorella Vulgaris, para remoción de materia orgánica en aguas residuos urbanas. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 21 N° 2. Pp: 138 – 152. https://doi.org/10.24054/limentech.v21i2.2792
Paula, L. C. de, Lemes, A. C., Neri, H. F. da S., Ghedini, P. C., Batista, K. de A., & Fernandes, K. F. (2020). Antioxidant and anitoperoxidative effect of polypeptides from common beans (Phaseolus vulgaris, cv BRS Pontal) / Efeito antioxidante e anitoperoxidativo dos polipéptidos do feijão comum (Phaseolus vulgaris, cv BRS Pontal). Brazilian Journal of Development, 6(7), 50569-50580. https://doi.org/10.34117/bjdv6n7-635
Peng, X., Ma, J., Cheng, K.-W., Jiang, Y., Chen, F., & Wang, M. (2010). The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry, 119(1), 49-53. https://doi.org/10.1016/j.foodchem.2009.05.083
Prado, D. M. F., Almeida, A. B., Oliveira Filho, J. G., Alves, C. C. F., Egea, M. B., & Lemes, A. C. (2021). Extraction of Bioactive Proteins from Seeds (Corn, Sorghum, and Sunflower) and Sunflower Byproduct: Enzymatic Hydrolysis and Antioxidant Properties. Current Nutrition & Food Science, 17(3), 310-320. https://doi.org/10.2174/1573401316999200731005803
Putra, N. R., Rizkiyah, D. N., Abdul Aziz, A. H., Che Yunus, M. A., Veza, I., Harny, I., & Tirta, A. (2023). Waste to Wealth of Apple Pomace Valorization by Past and Current Extraction Processes: A Review. Sustainability, 15(1), Article 1. https://doi.org/10.3390/su15010830
Rajendran, S. R., Mohan, A., Khiari, Z., Udenigwe, C. C., & Mason, B. (2018). Yield, physicochemical, and antioxidant properties of Atlantic salmon visceral hydrolysate: Comparison of lactic acid bacterial fermentation with Flavourzyme proteolysis and formic acid treatment. Journal of Food Processing and Preservation, 42(6), e13620. https://doi.org/10.1111/jfpp.13620
Ramírez, K., Pineda-Hidalgo, K. V., & Rochín-Medina, J. J. (2021). La fermentación de posos de café usados por Bacillus clausii induce la liberación de péptidos potencialmente bioactivos. LWT, 138, 110685. https://doi.org/10.1016/j.lwt.2020.110685
Rodríguez, A. B. B., Fuertes, M. M. P., Ramírez, G. E. M., Rodríguez, A. B. B., Fuertes, M. M. P., & Ramírez, G. E. M. (2023). Uso potencial de residuos agroindustriales como fuente de compuestos fenólicos con actividad biológica. MediSur, 21(6), 1322-1330.
Romero, M. (2022). Los residuos agroindustriales, una oportunidad para la economía circular. TecnoLógicas, 25(54). https://doi.org/10.22430/22565337.2505
Rout, P., Chakraborty, C., & Hossain, S. (2024). Functional characterization of enzyme-hydrolysed soy and whey protein isolates: A comparative approach. Food Chemistry Advances, 5, 100745. https://doi.org/10.1016/j.focha.2024.100745
Ruan, S., Li, Y., Wang, Y., Huang, S., Luo, J., & Ma, H. (2020). Analysis in protein profile, antioxidant activity and structure-activity relationship based on ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis. Ultrasonics Sonochemistry, 64, 104846. https://doi.org/10.1016/j.ultsonch.2019.104846
Sadeghi, A., Hakimzadeh, V., & Karimifar, B. (2017). Microwave Assisted Extraction of Bioactive Compounds from Food: A Review. International Journal of Food Science and Nutrition Engineering. https://www.semanticscholar.org/paper/Microwave-Assisted-Extraction-of-Bioactive-from-A-Sadeghi-Hakimzadeh/0c58335a3efeed68c18676410d3dfecddfdab06d
Salazar-Sánchez Margarita del Rosario, Solanilla-Duque José Fernando. (2023). Tendencias en el aprovechamiento de residuos de mango para la obtención de materiales no alimentarios. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN Impreso 1692-7125 ISSN Electrónico 2711-3035. Volumen 21 N° 1. Pp: 160 – 179. https://doi.org/10.24054/limentech.v21i2.2742
San Pablo, B., Mojica, L., & Urías, J. E. (2019). Chia Seed (Salvia hispanica L.) Pepsin Hydrolysates Inhibit Angiotensin-Converting Enzyme by Interacting with its Catalytic Site. Journal of Food Science, 84(5), 1170-1179. https://doi.org/10.1111/1750-3841.14503
Santana, Á. L., & Meireles, M. A. A. (2023). Extraction of Essential Oils with Supercritical Fluid. En Inamuddin (Ed.), Essential Oils (1.a ed., pp. 671-684). Wiley. https://doi.org/10.1002/9781119829614.ch30
Santos, D. I., Saraiva, J. M. A., Vicente, A. A., & Moldao-Martins, M. (2019). 2—Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. En F. J. Barba, J. M. A. Saraiva, G. Cravotto, & J. M. Lorenzo (Eds.), Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds (pp. 23-54). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814174-8.00002-0
Schiebel, C. S., Bueno, L. R., Pargas, R. B., de Mello Braga, L. L. V., da Silva, K. S., Fernandes, A. C. V. U., dos Santos Maia, M. H., de Oliveira, N. M. T., Bach, C., & Maria-Ferreira, D. (2024). Exploring the biological activities and potential therapeutic applications of agro-industrial waste products through non-clinical studies: A systematic review. Science of The Total Environment, 950, 175317. https://doi.org/10.1016/j.scitotenv.2024.175317
Shanthakumar, J., Karthikeyan, A., Bandugula, V. R., & Rajendra Prasad, N. (2012). Ferulic acid, a dietary phenolic acid, modulates radiation effects in Swiss albino mice. European Journal of Pharmacology, 691(1), 268-274. https://doi.org/10.1016/j.ejphar.2012.06.027
Serna F. Tiana, Contreras S. Yucelys, Lozano P. María; Salcedo M. Jairo, Hernández R. Jorge, (2017). Variación del método de secado en la fermentación espontanea de almidón nativo de yuca. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN 1692-7125. Volumen 15 N° 1. Pp:50 -65. DOI: https://doi.org/10.24054/limentech.v15i1.2174
Sim, H.-J., Bhattarai, G., Lee, J., Lee, J.-C., & Kook, S.-H. (2019). The Long-lasting Radioprotective Effect of Caffeic Acid in Mice Exposed to Total Body Irradiation by Modulating Reactive Oxygen Species Generation and Hematopoietic Stem Cell Senescence-Accompanied Long-term Residual Bone Marrow Injury. Aging and Disease, 10(6), Article 6. https://doi.org/10.14336/AD.2019.0208
Singh, A., & Negi, P. S. (2025). Biotechnological Application of Health-Promising Bioactive Compounds. En Biotechnological Intervention in Production of Bioactive Compounds (pp. 73-94). Springer, Cham. https://doi.org/10.1007/978-3-031-76859-0_5
Singh, R. D., Muir, J., & Arora, A. (2021). Concentration of xylooligosaccharides with a low degree of polymerization using membranes and their effect on bacterial fermentation. Biofuels, Bioproducts and Biorefining, 15(1), 61-73. https://doi.org/10.1002/bbb.2145
Singh, T. P., Siddiqi, R. A., & Sogi, D. S. (2019). Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT, 99, 77-83. https://doi.org/10.1016/j.lwt.2018.09.014
Soquetta, M. B., Terra ,Lisiane de Marsillac, & and Bastos, C. P. (2018). Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA - Journal of Food, 16(1), 400-412. https://doi.org/10.1080/19476337.2017.1411978
Soto Toloza, E. P., Acevedo, S. N. M., & Caballero Pérez, L. A. (2023). Efecto de la sustitución parcial de harina de trigo (Triticum Vulgare) por harina de garbanzo (Cicer Arietinum L) en las características sensoriales de una galleta dulce. REVISTA AMBIENTAL AGUA, AIRE Y SUELO, 14(1), Article 1. https://doi.org/10.24054/raaas.v14i1.2747
Soto Toloza, E. P., & Caballero Pérez, L. A. (2021). Evaluación de la calidad de café en taza de una muestra comercial de la region frente a una muestra comercial de alta calidad tipo exportación. @limentech, Ciencia y Tecnología Alimentaria, 19(1), Article 1. https://doi.org/10.24054/limentech.v19i1.1408
Tacias, V. G., Castañeda, D., Morellon, R., Tavano, O., Berenguer-Murcia, Á., Vela-Gutiérrez, G., Rather, I. A., & Fernandez-Lafuente, R. (2021). Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. International Journal of Biological Macromolecules, 184, 415-428. https://doi.org/10.1016/j.ijbiomac.2021.06.076
Tesfay, S., & Teferi, M. (2017). Assessment of fish post-harvest losses in Tekeze dam and Lake Hashenge fishery associations: Northern Ethiopia. Agriculture & Food Security, 6(1), Article 1. https://doi.org/10.1186/s40066-016-0081-5
Tosh, S. M., Brummer, Y., Miller, S. S., Regand, A., Defelice, C., Duss, R., Wolever, T. M. S., & Wood, P. J. (2010). Processing Affects the Physicochemical Properties of b-Glucan in Oat Bran Cereal. Journal of Agricultural and Food Chemistry, 58(13), 7723-7730. https://doi.org/10.1021/jf904553u
Trombino, S., Cassano, R., Procopio, D., Di Gioia, M. L., & Barone, E. (2021). Valorization of Tomato Waste as a Source of Carotenoids. Molecules (Basel, Switzerland), 26(16), 5062. https://doi.org/10.3390/molecules26165062
Ulug, E., & Pinar, A. A. (2023). A New Approach to Polycystic Ovary Syndrome and Related Cardio-metabolic Risk Factors: Dietary Polyphenols. Current Nutrition Reports, 12(3), 508-526. https://doi.org/10.1007/s13668-023-00488-7
Universidad E.I.A. (2020). Investigación pretende reutilizar 600 toneladas de residuos agroindustriales cada año en Urabá. EIA. https://www.eia.edu.co/portfolio/noticias-eia-investigacion-pretende-reutilizar-600-toneladas-de-residuos-agroindustriales-cada-ano-en-uraba/
Urbonaviciene, D., & Viskelis, P. (2017). Composición de isómeros de cis -licopeno en subproductos de tomate extraídos con CO2 supercrítico. LWT - Food Science and Technology, 85, 517-523. https://doi.org/10.1016/j.lwt.2017.03.034
Wang, J., Li, T., Feng, J., Li, L., Wang, R., Cheng, H., & Yuan, Y. (2018). El kaempferol protege contra la mortalidad y el daño inducidos por la radiación gamma al inhibir el estrés oxidativo y modular las moléculas apoptóticas in vivo e vitro. Environmental Toxicology and Pharmacology, 60, 128-137. https://doi.org/10.1016/j.etap.2018.04.014
Wang, L., Li, T., Wu, C., Fan, G., Zhou, D., & Li, X. (2025). Unlocking the potential of plant polyphenols: Advances in extraction, antibacterial mechanisms, and future applications. Food Science and Biotechnology, 34(6), 1235-1259. https://doi.org/10.1007/s10068-024-01727-5
Wisuthiphaet, N., Klinchan, S., & Kongruang, S. (2016). Fish Protein Hydrolysate Production by Acid and Enzymatic Hydrolysis. Applied Science and Engineering Progress, 9(4), Article 4. https://ph02.tci-thaijo.org/index.php/ijast/article/view/72566
Wong, J. E., Aguilar, P., Veana, F., & Muñiz-Marquez, D. B. (2020). Impacto de las tecnologías de extracción verdes para la obtención de compuestos bioactivos de los residuos de frutos cítricos. TIP Revista Especializada en Ciencias Químico-Biológicas, 23(1), 1-11.
Wong, J. E., Muñiz, D. B., Martínez, G. C. G., Belmares, R. E., & Aguilar, C. N. (2015). Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrasonics Sonochemistry, 22, 474-481. https://doi.org/10.1016/j.ultsonch.2014.06.001
Xue, Q., Chen, Q., Wang, M., & Liu, L. (2022). [Radioprotective effects of gallic acid on bone marrow cells in mice]. Wei sheng yan jiu = Journal of hygiene research, 51(1), 91-98. https://doi.org/10.19813/j.cnki.weishengyanjiu.2022.01.016
Yousefi, M., Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Wysokowski, M., Jesionowski, T., Ehrlich, H., & Mirsadeghi, S. (2019). Supercritical fluid extraction of essential oils. TrAC Trends in Analytical Ch
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.