An approach to the air-breathing engines based in supersonic combustion “SCRAMJET”
DOI:
https://doi.org/10.24054/rcta.v3iEspecial.853Keywords:
Air-Breathing, Hypersonic Aerothermodynamics, Mach number, Ramjet, ScramjetAbstract
Rockets generally carry out Space missionswith approximately 97% to 98% of efficiency. The total weight of a rocket is approximately 95% propulsion system (fuel, oxidant and structure) and 5% payload, for this reason, the operating costs are quite high. Several research centres have been concerned with reducing weight of the propulsion system in terms of fuel and infrastructure. This article reflects a preliminary exploratory analysis of the concepts and characteristics that make up a propulsion system that can optimize fuel requirements and increase efficiency. The present work is divided into four parts, beginning with the introduction including the needs to look for a newtechnology in space missions. The second part deals with relevant historical aspects; in the third part,a description of the operation, the advantages and disadvantages of its implementation is made, finally, a discussion of the feasibility of Scramjet technology.
Downloads
References
A. El-Sayed. Aircraft propulsion and gas turbine engines. Boca Raton: CRC Perss, 2008.
BOEING FRONTIERS, “Boeing has several hypersonic projects that likely will depend on air-breathing engines” recuperado en de Junio de 2019 [En Línea], Disponible en: http://www.boeing.com/news/frontiers/archive/2002/september/i_tt.html
C. Segal. The Scramjet Engine: processes and characteristics. Nueva York: Cambridge University Press, (2009).
F. Falempin. “Ramjet and Dual Mode Operation”. Von Karman Institute and RTO, Francia, 2007.
F. S. Ronald. Century of Ramjet Propulsion Technology Evolution. Journal of Propulsion and Power, Vol 20. Enero - Febrero 2004.
HEISER, H. W.; PRATT, D. T. Hypersonic Airbreathing Propulsion. AIAA Education Series, 1994.
IEAv - Instituto de estudos avanzados, “Demonstrador Tecnológico de Estado-Reator a Combustão Supersônica 14-X”, Recuperado en septiembre de 2011 [En Línea] , disponibe en: http://www.henrynagamatsu.org/?cat=46
J. D. Anderson. Introduction to Flight. United States of America: McGraw-Hill Higher Education, 8 edition 2015.
K. Barnstorff. NASA Langley Research Center “X-51A Makes Longest Scramjet Flight”. Mayo de 2010. , recuperado en septiembre de 2019 [En Línea], disponible en: https://www.nasa.gov/topics/aeronautics/features/X-51A.html
K. N. Robert., “Analysis and design of a hypersonic scramjet engine with a starting mach number of 4.00”. M.S. Thesis, The University of Texas, Estados Unidos, 2008.
M. Conner. NASA “X-43A (Hyper-X)”. agosto de 2017.Recuperado en septiembre de 2019 [En Línea] , disponible en: https://www.nasa.gov/centers/armstrong/history/experimental_aircraft/X-43A.html
NASA, “Dryden Flight Research Center”, recuperado en septiembre de 2011 [En Línea], Disponible en: http://www.nasa.gov/centers/dryden/espanol/FS-040-DFRC_espanol.html
P. Ricco. Aérostories. (2001) Recuperado en septiembre de 2011, disponible en: http://aerostories.free.fr/constructeurs/leduc/page8.html
PRATT & WHITNEY A United Thecnologies Company, “Engineering hypersonic engines that function at both low and high supersonic speeds”, recuperado en febrero de 2012 [En Línea], Disponible en : http://www.pw.utc.com/Hypersonics
R. VARVILL, y A. BOND, “A Comparison of Propulsion Concepts for SSTO reusable launchers” Journal British Interplanetary Society, 56:108-117, (2003).
R.L. Alcaide, “Investigação da combustão supersônica em túnel de choque hipersônico”. M.S. Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil, 2009.
SPACEX, “CAPABILITIES & SERVICES” (2020). [En Línea], Disponible en: https://www.spacex.com/about/capabilities
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.