Development of a thermally insulating ceramic construction unit for masonry envelopes in hot tropical climates

Authors

DOI:

https://doi.org/10.24054/rcta.v2i40.2355

Keywords:

Ceramics, Design, Thermal insulation

Abstract

The present research develops a new constructive ceramic product with thermo-insulating principles, integrating characteristics in the internal and external shape of the piece that seek to mitigate the thermal transmittance of the envelope system passively, the design assumes a model that uses the thickness dimension to generate thermal resistance in the prototype, likewise, it creates internal partitions with dissipative geometries that avoid direct thermal bridges and generates a function of ventilated chambers in the first layer of the piece to contain and dissipate the energy. In order to study its thermal efficiency, a dynamic method is implemented in simulations of temperature distribution and heat flow under hot tropical climate conditions, determining temperature profiles between the initial and final surface of the sample. This design process allows generating a model for a thermo-efficient ceramic facade that reduces the energy transferred through the architectural masonry by 7°C on average.

References

Colmenares A., S. J. (2019). Comparative thermal analysis of extruded ceramic products between multi perforated brick and modified bricks in cells distribution. Journal of Physics: Conference Series, 1386, 28-31.

Colmenares, A. S. (2020). Caracterización térmica y técnica del ladrillo multiperforado a nivel de laboratorio. Respuestas, 25, 43-49.

Halawa E., G. A. (2018). A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin. Renewable and sustainable energy reviews, 57, 1743-1752.

Hiyama, K. &. (2015). Preliminary design method for naturally ventilated buildings using target air change rate and natural ventilation potential maps in the United States. Energy, 89, 655-666.

IDEAM. (2020). Informe estacion meteorológica Aeropuesto Camilo Daza. Bogotá: Instituto de Hidrología Meteorología y Estudios Ambientales.

Mirrahimi, S. M. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renewable and Sustainable Energy Reviews, 53, 1508-1519.

Narváez M., S. J. (2019). Physical-thermal isolation strategies for the design of sustainable ceramic building units. Journal of Physics: Conference Series, 1645, 1-9.

Narváez M., S. J. (2021). Análisis térmico por método de elementos finitos en nuevos modelos de piezas cerámicas constructivas. Mundo Fesc, 11, 1-8.

Narváez M., S. J. (2021). Analysis of heat fluxes in ceramic block type building pieces. Journal of Physics: Conference Series, 2118, 1-8.

Narváez, M. S. (2019). Comparative evaluation of the physical, mechanical, and thermal properties of traditional H10 and H15 red clay blocks manufactured by the ceramic industry from San José de Cúcuta, Colombia. Journal of Physics: Conference series, 1388, 1-8.

Narváez, M. S. (2020). Cámaras de aire ventiladas en un producto cerámico tradicional para envolventes de mampostería con enfriamiento pasivo. Mundo Fesc, 10, 128-135.

Narváez, M. S. (2020). Experimentación comparativa de transferencia de calor por puente térmico a partir de la modificación de la geometría de los tabiques en bloque cerámico H10. Respuestas, 25, 29-35.

Pacheco R., O. J. (2012). Energy efficient design of building: A review. Renewable and sustainable energy reviews, 16, 3559-3573.

Samani P., L. V. (2016). Comparison of passive cooling techniques in improving thermal comfort of occupants of a pre-fabricated building. Energy and Buildings, 120, 30-44.

Sánchez J., Á. D. (2018). Cisco de Café como posible material sustituto de arcilla en la fabricación de materiales cerámicos de construcción en el área metropolitana de Cúcuta. Respuestas, 23, 27-31.

Sánchez J., R. D. (2013). El clúster de la cerámica del área metropolitana de Cúcuta (Cúcuta: Universidad Francisco de Paula Santander). Cúcuta: Universidad Francisco de Paula Santander.

Sánchez J., S. J. (2020). Desarrollo de un producto cerámico de construcción bajo los principios de la arquitectura bioclimática y sostenible. Ciencia e ingeniería Neogranadina, 30, 29-140.

Santamouris, M. (2016). Cooling the buildings – past, present and future. Energy and Buildings, 128, 617-638.

Sarabia A., S. J. (2017). Uso de nutrientes tecnológicos como materia prima en la fabricación de materiales de construcción en el paradigma de la economía circular. Respuestas, 22, 6-16.

Yao, R. C. (2018). The effect of passive measures on thermal comfort and energy conservation. A case study of the hot summer and cold winter climate in the Yangtze River region. Journal of Building Engineering, 15, 298-310.

Published

2023-05-02 — Updated on 2022-07-19

Versions

How to Cite

Narváez Ortega, M. S., Sánchez Zúñiga, J. V., & Sánchez Molina , J. (2022). Development of a thermally insulating ceramic construction unit for masonry envelopes in hot tropical climates. COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES, 2(40), 80–86. https://doi.org/10.24054/rcta.v2i40.2355 (Original work published May 2, 2023)