Proposal of a teleoperated hybrid robot for the dismantling of explosive devices
DOI:
https://doi.org/10.24054/rcta.v2i38.1308Keywords:
Disruptor cannon, The hybrid robotAbstract
One of the greatest threat factors for the civilian and military population in the national territory and in much of the world are improvised explosive devices (IED), landmines, among other types of explosives. For this reason, the research proposal in this document focuses on the proposal and modeling of a teleoperated hybrid robot for the deactivation or controlled detonation of certain explosive devices, taking into account that close interaction with this type of device is dangerous and in some lethal cases and should be avoided. The robot proposed in the document is made up of a mobile platform which has an arm with three (3) degrees of freedom attached and has a caterpillar type traction, the final actuator of the arm will be a disruptor gun with which deactivation is intended. and / or the destruction of electrical components of explosive devices. The main structure will have a camera which will be in charge of sending images of the environment to the control unit in real time, which allows the operator to carry out missions in different environments and thus guarantee the safety of the operator and that of the team.
Downloads
References
Aguilera, S., Torres-Torriti, M., & Auat, F. (2014). Modeling of skid-steer mobile manipulators using spatial vector
"algebra and experimental validation with a compact loader. IEEE International Conference on Intelligent Robots and Systems, Iros, 1649–1655. https://doi.org/10.1109/IROS.2014.6942776"
M. (2017). Linear algebra applied to kinematic control of mobile manipulators. Lecture Notes in Electrical Engineering, 449, 297– 306. https://doi.org/10.1007/978-981-10-6451-7_35
Andaluz, V. H., Varela-aldás, J., Chicaiza, F. A., & Quevedo, W. X. (2019). Teleoperación de un manipulador móvil con retroalimentación de fuerzas para evasión de obstáculos. 291–305.
Andrews, C. (2010). How to... Defuse a Bomb. 52– 54. Andy, T., & Andrew, J. (2020). Control Based on Linear
Angulo, C., Ponsa, P., & Raya, C. (2006). Construcción modular de robots móviles. Proyecto basado en portafolio para estudiantes de grado. Revista Iberoamericana de Tecnologias Del Aprendizaje, 1(1), 19–26.
Arencibia, G., Hernandez, F., Menéndez, J., Rodríguez, J., & Pérez, A. (2020). ESTIMACIÓN DE ORIENTACIÓN, BASADA EN FILTRO DE KALMAN, USANDO UNIDAD DE MEDICIÓN MEDICIÓN INERCIAL SIN MAGNETÓMETRO. 41(3), 369–378.
Chantrasmi, T., Tansuwanarat, S., & Vallikul, P. (2015). Compact counter-recoil design of water cannon using a single nozzle with backward spray. ACDT 2015 - Proceedings: The 1st Asian Conference on Defence Technology. https://doi.org/10.1109/ACDT.2015.7111576
Clavijo, J. P. B., Morales, S. C., & Cárdenas, H. A. P. (2016). Análisis comparativo de las pruebas físicas del personal naval, región costa y sierra. Revista Cubana de Medicina Militar, 45(4), 1–16.
COLOMBIA, D. D. (2017). Estándares Nacionales de Desminado Humanitario Antipersonal en Colombia . Está permitido reproducir , guardar o transmitir el documento o partes del mismo , por fuente . Este documento y su contenido no pueden ser comercializados . Estándares Nacionales d. 1–33.
Corke, P. (2020). Robotics Toolbox. Robotics Toolbox for Matlab, 10, 437. http://petercorke.com/Robotics_Toolbox.html
Correa, M. (2010). EVALUACIÓN DE LA SALUD MENTAL EN MILITARES HERIDOS EN COMBATE DEL EJÉRCITO NACIONAL DE COLOMBIA. - INTERVENCIÓN COGNITIVO CONDUCTUAL-. 9(1), 76–99.
Darío, G., & Olga, R. (2016). Sistema Teledirigido De Un Brazo Robótico De 4 Grados De Libertad Aplicando Visión De Máquina. 571, 121–129.
De Fazio, R., Cafagna, D., Marcuccio, G., Minerba, A., & Visconti, P. (2020). A multi- source harvesting system applied to sensor-based smart garments for monitoring workers’ bio- physical parameters in harsh environments. Energies, 13(9). https://doi.org/10.3390/en13092161
Díaz, H., & Isabel, G. (2003). Minas antipersonales (M.A) en Colombia costo físico y emocional. Umbral Científico, 2, 0.
Díaz-cacho, M., Ing, E., Informatica, S., Ing, E., Informatica, S., & Barreiro, A. (2012). Plataforma de telerrobótica para laboratorios docentes.
Dueñas, J. (2009). VEHICULO EXPLORADOR PARA EL RECONOCIMIENTO DE ARTEFACTOS EXPLOSIVOS. Society, 3, 464.
Fong, T., & Thorpe, C. (2001). Vehicle teleoperation interfaces. Autonomous Robots, 11(1), 9–18. https://doi.org/10.1023/A:1011295826834
"Fong, T., Thorpe, C., & Baur, C. (2001). Advanced interfaces for vehicle teleoperation: Collaborative control, sensor fusion displays, and remote driving tools. Autonomous Robots, 11(1), 77–85. https://doi.org/10.1023/A:1011212313630"
Goldenerg, A., Kircanski, N., Dickie, S., Scott, G., & Grynieswski, L. (2000). EXPLOSIVES DISPOSAL ROBOT - Patent Number:6,113,343.
"González, R., Rodríguez, F., & Guzmán, J. L. (2015). Robots móviles con orugas. Historia, modelado, localización y control. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 12(1), 3–12. https://doi.org/10.1016/j.riai.2014.11."
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.