Estudio de la influencia del diámetro de conducto en el procedimiento fontan por medio de dinámica de fluidos computacional

Autores/as

  • Juan A. Rojas Universidad de los Andes
  • Omar D. López Mejía Universidad de los Andes
  • Catalina Vargas Acevedo Fundación Cardioinfantil
  • Miguel A. Ronderos Dumit Fundación Cardioinfantil

DOI:

https://doi.org/10.24054/rcta.v1i37.1200

Palabras clave:

Fontan, dinámica de fluidos computacional, CFD, diámetro de conducto, extracardiaco, atresia pulmonar

Resumen

En el presente trabajo se estudian los efectos del diámetro del conducto en la modificación extracardíaca del procedimiento Fontan utilizando dinámica de fluidos computacional (CFD) en un caso de atresia pulmonar con anatomía univentricular. Para obtener el modelo anatómico tridimensional del paciente se utilizaron las imágenes provenientes de la resonancia magnética (MRI), así mismo, se utilizaron estos datos para realizar la segmentación y obtener los datos de flujo en la vena cava superior (VCS) e inferior (VCI). De los resultados del cateterismo Post-Fontan se obtuvo la presión sanguínea en las ramas pulmonares y del conteo de hematocritos la viscosidad de la sangre. Las simulaciones se implementaron en el software comercial Ansys Fluent v17 en el cual se analizó la hemodinámica bajo condiciones de flujo estacionario para conductos de 16 mm, 18 mm, 20 mm y 22 mm observando la energía de pérdida y estancamiento para cada caso.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. Baretta, C. Corsini, A. Marsden, I. Vignon-Clementel, T.-Y. Hsia, G. Dubini, F. Migliavacca y G. Pennati, «Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions,» European Journal of Mechanics B/Fluids, vol. 35, pp. 61-69, 2012.

W. Yang, J. Feinstein, S. Shadden, I. Vignon-clementel y A. Marsden, «Optimization of a Y-graft Design for Improved Hepatic Flow Distribution in the Fontan Circulation,» Journal of Biomechanical engineering, vol. 135, nº 1, 2013.

A. Baretta, C. Corsini, W. Yang, E. Vignon-Clementel, A. Marsden, J. Feinstein, T. Hsia, G. Dubini, F. Migliavacca y G. Pennati, «Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case,» Philosophical transactions of the royal society A, vol. 369, nº 1954, pp. 4316-30, 2011.

J. Kennington, S. Frankel, J. Chen, S. Koenig, M. Sobieski, G. Giridharan y M. Rodefeld, «Design Optimization and Performance Studies of an Adult Scale Viscous Impeller Pump for Powered Fontan in an Idealized Total Cavopulmonary Connection,» Cardiovascular Engineering and Technology volume, vol. 2, pp. 237-243, 2011.

T. Gundtert, A. Marsden, W. Yang y J. LaDisa, «Optimization of cardiovascular stent design using computational fluid dynamics,» Journal of Biomechanical Engineering, vol. 134, nº 1, 2012.

E. Bove, M. de Leval, F. Migliavacca, R. Balossino y G. Dubini, «Toward optimal hemodynamics: Computer modeling of the Fontan circuit,» Pedriatric Cardiology, vol. 28, nº 6, pp. 477-481, 2007.

J. Kennington, S. Frankel, J. Chen, M. Rodefeld y G. Giridharan, «Design of a Novel Cavopulmonary Assist Device for Fontan Procedures: CFD, PIV, and Hydraulic Testing,» de ASME 2010 Summer Bioengineering Conference, ASME 2010 Summer Bioengineering Conference, 2013.

N. Alphonso, M. Baghai, P. Sundar, R. Tulloh, C. Austin y D. Anderson, «Intermediate-term outcome following the fontan operation: A survival, functional and risk-factor analysis,» Eur J Cardiothorac Surg, vol. 28, nº 4, pp. 526-535, 2005.

A. Amodeo, M. Grigioni, G. Oppido, C. Daniele, G. D'Avenio, G. Pedrizzetti, S. Giannico, S. Filippelli y R. Di Donato, «The beneficial vortex and best spatial arrangement in total extracardiac cavopulmonary connection,» The Journal of thoracic and cardiovascular surgery, vol. 124, nº 3, pp. 471-478, 2002.

F. Migliavacca, M. de Leval, G. Dubini, R. Pietrabissa y R. Fumero, «Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit,» Medical Engineering and Physics, vol. 21, nº 3, pp. 187-193, 1999.

C. G. De Groff, «Modeling the Fontan circulation: Where we are and where we need to go,» Pediatric Cardiology, vol. 29, nº 1, pp. 3-12, 2008.

C. Haggerty, M. Restrepo, E. Tang, D. de Zelicourt, K. Sundareswaran, L. Maribella, J. Bethel, K. Whitehead, M. Fogel y A. Yoganathan, «Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: A computational fluid dynamics analysis,» The Journal of Thoracic and Cardiovascular Surgery, vol. 148, nº 4, pp. 1481-1489, 2014.

Y. Kotani, S. Anggriawan, D. Chetan, L. Zhao, N. Liyanage, A. Saedi, C. Caldarone, G. Van Arsdell y O. Honjo, «Fate of the hypoplastic proximal aortic arch in infants undergoing repair for coarctation of the aorta through a left thoracotomy,» The Annals of Thoracic Surgery, vol. 98, nº 4, pp. 1386-1393, 2014.

D. de Zelicourt, L. Ge, C. Wang, F. Sotiropoulos, A. Gilmanov y A. Yonagathan, «Flow simulations in arbitrarily complex cardiovascular anatomies- An unstructured Cartesian grid approach,» Computer and Fluids, vol. 38, nº 9, pp. 1749-1762, 2009.

M. Cibis, K. Jarvis, M. Markl, M. Rose, C. Rigsby, A. Barker y J. Wentzel, «The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics,» Journal of Biomechanics, vol. 48, pp. 2984-2989, 2015.

A. Marsden, I. Vignon-Clementel, F. Chan, J. Feinstein y C. Taylor, «Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection,» Annals of Biomedical Engineering, vol. 35, nº 2, pp. 250-263, 2007.

A. Marsden, A. Bernstein, M. Reddy, S. Shadden, R. Spilker, F. Chan, C. Taylor y J. Feinstein, «Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics.,» The Journal of Thoracic and Cardiovascular Surgery, vol. 137, nº 2, pp. 394-403, 2009.

J. Liu, Y. Qian, Q. Sun, J. Lui y M. Umesu, «Use of computational fluid dynamics to estimate hemodynamic effects of respiration on hypoplastic left heart syndrome surgery: total cavopulmonary connection treatments,» The Scientific World Journal, p. 12, 2013.

K. Dorniak, E. Heiberg, M. Hellman, D. Rawicz-Zegrzda, M. Wesierska, R. Galaska, A. Sabisk, E. Szurowska, M. Dudziak y E. Hedstrom, «Required temporal resolution for accurate thoracic aortic pulse wave velocity measurements by phase-contrast magnetic resonance imaging and comparison with clinical standard applanation tonometry,» BMC Cardiovascular Disorders, vol. 16, nº 1, pp. 110-120, 2016.

A. Lardo, S. Webber, I. Friehs, P. del Nido y E. Cape, «Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections,» The Journal of Thoracic and Cardiovascular Surgery, vol. 117, nº 4, pp. 697-704, 1999.

M. Restrepo, E. Tang, C. Haggerty, R. Khiabani, L. Mirabella, J. Bethel, A. M. Valente , K. Whitehead, D. McElhinney, M. Fogel y A. Yognathan, «Energetic implications of vessel growth and flow changes over time in fontan patient,» The annals of thoracic surgery, vol. 99, nº 1, pp. 163-170, 2015.

K. Itatani, K. Miyaji, T. Tomoyasu, Y. Nakahata, K. Ohara, S. Takamoto y M. Ishii, «Optimal Conduit Size of the Extracardiac Fontan Operation Based on Energy Loss and Flow Stagnation,» The annals of thoracic surgery, vol. 88, nº 2, pp. 565-572, 2009.

K. Moyle, G. Mallison, C. Occleshaw, B. Cowan y T. Gentles, «Wall shear stress is the primary mechanism of energy loss in the Fontan connection,» Pedriatric Cardiology, vol. 27, nº 3, pp. 309-315, 2006.

Descargas

Publicado

2021-03-10 — Actualizado el 2021-03-10

Cómo citar

[1]
J. A. Rojas, O. D. López Mejía, C. Vargas Acevedo, y M. A. Ronderos Dumit, «Estudio de la influencia del diámetro de conducto en el procedimiento fontan por medio de dinámica de fluidos computacional», RCTA, vol. 1, n.º 37, pp. 80–90, mar. 2021.

Número

Sección

Artículos