Application of machine learning algorithms in geoscience: comprehensive review and future challenge
DOI:
https://doi.org/10.24054/raaas.v14i2.2783Keywords:
Application, Machine Learning, Geoscience, natural phenomenaAbstract
This article addresses the application of Machine Learning (ML) techniques in geoengineering and geoscience, highlighting its relevance in the prediction and understanding of natural phenomena. Despite the absence of specific physical laws, ML models offer flexibility to adapt and discover complex patterns. In particular, the ability of ML to improve the accuracy and efficiency in predicting susceptibility to land gradients is highlighted, with approaches such as supervised and unsupervised learning. The importance of understanding why a model classifies certain classes is mentioned, offering explainable tools that allow results that are aligned with the physical understanding of geological processes. Additionally, crucial applications of ML in geotechnical engineering are explored, with models based on algorithms such as support vector machines, artificial neural networks, and Bayes classifiers. The need to investigate the compatibility of physics-based models and AI data is highlighted for a more complete understanding and reliable predictions. The integration of ML techniques in geoengineering emerges as a key strategy to address current climate and anthropogenic challenges, offering new perspectives in the investigation of land sectors and other geological hazards. This article is part of the research carried out within the framework of the Master's Degree in Environmental Engineering, which seeks to explore the potential of Machine Learning for the management of geological risks.
Downloads
References
Akinci, H., & Zeybek, M. (2021). Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Natural Hazards, 108(2). https://doi.org/10.1007/s11069-021-04743-4
Buranyi, S. (2017). Rise of the racist robots - how AI is learning all our worst impulses. The Guardian, August 8.
Goetz, J. N., Brenning, A., Petschko, H., & Leopold, P. (2015). Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers and Geosciences, 81. https://doi.org/10.1016/j.cageo.2015.04.007
Götz, M., Richerzhagen, M., Bodenstein, C., Cavallaro, G., Glock, P., Riedel, M., & Benediktsson, J. A. (2015). On scalable data mining techniques for earth science. Procedia Computer Science, 51(1). https://doi.org/10.1016/j.procs.2015.05.494
Hinestroza, D., & Cárdenas, J. (2018). El Machine Learning a través de los tiempos, y los aportes a la humanidad.
Huang, F., Yan, J., Fan, X., Yao, C., Huang, J., Chen, W., & Hong, H. (2022). Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geoscience Frontiers, 13(2). https://doi.org/10.1016/j.gsf.2021.101317
Huang, F., Yin, K., Huang, J., Gui, L., & Wang, P. (2017). Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Engineering Geology, 223. https://doi.org/10.1016/j.enggeo.2017.04.013
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lin, G. F., Chang, M. J., Huang, Y. C., & Ho, J. Y. (2017). Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Engineering Geology, 224, 62–74. https://doi.org/10.1016/j.enggeo.2017.05.009
López-Cotuá, A. (2017). Armero, Una Historia Hecha Ceniza: Preguntas Que Quedaron En El Olvido. Revista Saber, Ciencia y Libertad, 18–21.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 2017-December.
Luo, H. Y., Shen, P., & Zhang, L. M. (2019). How does a cluster of buildings affect landslide mobility: a case study of the Shenzhen landslide. Landslides, 16(12). https://doi.org/10.1007/s10346-019-01239-y
Melchiorre, C., Matteucci, M., Azzoni, A., & Zanchi, A. (2008). Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 94(3–4), 379–400. https://doi.org/10.1016/J.GEOMORPH.2006.10.035
Mendoza, W., Taborda, G., & Villagrán, J. (2016). Investigación documental sobre la tragedia de Quebradablanca en la vía Bogotá – Villavicencio, en el año 1974 “Quebradablanca, el olvido de una tragedia".
Mitchell, T. M. (1997). Machine Learning. In Natural Computing Series. https://doi.org/10.1007/978-3-031-17922-8_9
Mohammadi, S. D., Naseri, F., & Alipoor, S. (2015). Development of artificial neural networks and multiple regression models for the NATM tunnelling-induced settlement in Niayesh subway tunnel, Tehran. Bulletin of Engineering Geology and the Environment, 74(3). https://doi.org/10.1007/s10064-014-0660-2
Morales, D. (2021, January 26). Inteligencia artificial y Ciencias de la Tierra. https://revistacienciasdelatierra.com/geoingenieria-y-tecnologia/inteligencia-artificial-y-ciencias-de-la-tierra/8376/
Ortiz, V., Polo, C., Girales, D., & Manco-Jaraba, D. (2022). Análisis de susceptibilidad por movimientos en masaimplementando el método Mora-Vahrson modificado para elcorregimiento de Chemesquemena (Cesar, Colombia). Tecnura, 27(77), 1–21. https://doi.org/https://doi.org/10.14483/22487638.19951
Ou, Q., Zhang, L., Ding, X., & Wang, C. (2022). Response of Inclined Loaded Pile in Layered Foundation Based on Principle of Minimum Potential Energy. International Journal of Geomechanics, 22(7). https://doi.org/10.1061/(asce)gm.1943-5622.0002400
Özdemir, V., & Hekim, N. (2018). Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, “the Internet of Things” and Next-Generation Technology Policy. OMICS A Journal of Integrative Biology, 22(1), 65–76. https://doi.org/10.1089/omi.2017.0194
Pham, B. T., Bui, D. T., Dholakia, M. B., Prakash, I., Pham, H. V., Mehmood, K., & Le, H. Q. (2017). A novel ensemble classifier of rotation forest and Naïve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomatics, Natural Hazards and Risk, 8(2). https://doi.org/10.1080/19475705.2016.1255667
Pourghasemi, H. R., & Rahmati, O. (2018). Prediction of the landslide susceptibility: Which algorithm, which precision? Catena, 162. https://doi.org/10.1016/j.catena.2017.11.022
Rouhiainen, L. (2018). Inteligencia artificial 101 cosas que debes saber hoy sobre nuestro futuro. Alienta Editorial, 22. https://planetadelibrosar0.cdnstatics.com/libros_contenido_extra/40/39307_Inteligencia_artificial.pdf
Samodra, G., Chen, G., Sartohadi, J., & Kasama, K. (2017). Comparing data-driven landslide susceptibility models based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java. Environmental Earth Sciences, 76(4), 1–19. https://doi.org/10.1007/s12665-017-6475-2
Shi, S., Zhao, R., Li, S., Xie, X., Li, L., Zhou, Z., & Liu, H. (2019). Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application. Tunnelling and Underground Space Technology, 90. https://doi.org/10.1016/j.tust.2019.04.013
Tamayo, H. (2017, September 27). 30 años del deslizamiento en Villatina, una tragedia que no se olvida. EL TIEMPO. https://www.eltiempo.com/colombia/medellin/30-anos-del-deslizamiento-en-villatina-una-tragedia-que-no-se-olvida-135132
Thessen, A. E. (2016). Adoption of machine learning techniques in ecology and earth science. One Ecosystem, 1. https://doi.org/10.3897/oneeco.1.e8621
Wang, Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment, 666. https://doi.org/10.1016/j.scitotenv.2019.02.263
Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., & Al-Katheeri, M. M. (2016). Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5). https://doi.org/10.1007/s10346-015-0614-1
Youssef, K., Shao, K., Moon, S., & Bouchard, L.-S. (2022). XAI model for accurate and interpretable landslide susceptibility. ArXiv Preprint ArXiv:2201.06837.
Zhan, L. tong, Guo, X. gang, Sun, Q. qian, Chen, Y. min, & Chen, Z. yu. (2021). The 2015 Shenzhen catastrophic landslide in a construction waste dump: analyses of undrained strength and slope stability. Acta Geotechnica, 16(4). https://doi.org/10.1007/s11440-020-01083-8
Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D., & Zhang, Y. (2022). Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. In Gondwana Research (Vol. 109). https://doi.org/10.1016/j.gr.2022.03.015
Zhao, X., & Chen, W. (2020). Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142180
Zhou, C., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F., & Pourghasemi, H. R. (2018). Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Computers and Geosciences, 112. https://doi.org/10.1016/j.cageo.2017.11.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 REVISTA AMBIENTAL AGUA, AIRE Y SUELO
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.