Physical and chemical characterization of natural esparto fiber (Juncus Ramboi Subsp. Colombianus) as a reinforcement alternative in composite materials
DOI:
https://doi.org/10.24054/aaas.v8i1.2057Keywords:
Refuerzo, fibra natural, propiedades mecánicas , morfología , estabilidad térmicaAbstract
This research focuses on the study of the mechanical, thermal, and morphological properties of the Colombian natural fiber Juncus ramboi subsp. Colombianus, commonly known as esparto, used in the department of Boyacá (Colombia) for handicraft production. Accordingly, tensile behavior was determined (ASTM D3822), thermal stability was assessed by thermogravimetric analysis (TGA), and morphology was examined using scanning electron microscopy (SEM). The results of the mechanical properties showed a maximum stress of 159 MPa. Thermal analysis revealed a moisture content of 8% with degradation stability against heat up to 210°C. Additionally, the microstructure showed a solid cell wall with a large lumen concentrated in the central part of the fiber. Finally, the results indicate that esparto fiber is a viable alternative for use as reinforcement in composite materials subjected to moderate tensile loads.
Downloads
References
Almudena, O. M. (2014). Reciclado mecánico de materiales compuestos con fibras de celulosa. Madrid, España: Publicia.
Alves, F. M. E., Castro, T. V., Martins, O. F., Silva, F. A., & Toledo, R. D. (2013). The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology, 149–157.
Bledzki, A. K., Franciszczak, P., Osmanb, Z., & Elbadawi, M. (2015). Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products, 70, 91–99.
Carvajal, J. A. (1996). Semiología de códigos culturales. Pamplona, Colombia: Universidad de Pamplona.
De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70, 116–122.
DeRosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2011). Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Composites Science and Technology, 71, 246–254.
Dittenber, D. B., & GangaRao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A, 2–11.
Eichhorn, S. J., Baillie, C. A., Zafeiropoulos, N., Mwaikambo, L. Y., Ansell, M. P., & Dufresne, A. (2001). Current international research into cellulosic fibres and composites. Journal of Materials Science, 2107–2131.
Fiore, V., Scalici, T., & Valenza, A. (2014). Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers, 106, 77–83.
Francucci, G., & Rodriguez, E. (2014). Processing of plant fiber composites by liquid molding techniques: An overview. Polymer Composites. https://doi.org/10.1002/pc
Girisha, G., & Srinivas, D. (2012). Sisal/coconut coir natural fibers-epoxy composites: Water absorption and mechanical properties. International Journal of Engineering and Innovative Technology, 166–170.
Lucena, M. P., Suarez, A., & Zamudio, I. (2009). Desarrollo de un material compuesto a base de fibras de bambú para aplicaciones aeronáuticas. Revista Latinoamericana de Metalurgia y Materiales, S1(3), 1107–1114.
Manikandan, K. C., Diwan, S. M., & Thomas, S. (1996). Tensile properties of short sisal fiber reinforced polystyrene composites. Journal of Applied Polymer Science, 1483–1497.
Mata Cabrera, F. (2004). Utilización de composites de matriz polimérica en la fabricación de automóviles. Técnica Industrial, (254), 43–47.
Mehmet, S., Yoldas, S., Kutlay, S., & Cenk, D. (2014). Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B, 57, 180–186.
Mora, E., William, J., Ramón, V., Bladimir, A., Ramón, V., & Fabuer. (2013). Desarrollo de materiales biocompuestos reforzados con fibras naturales colombianas. Revista Ambiental Agua, Aire y Suelo, 4(2), 1–7.
Mora, W., & Ramón, B. (2017). Caracterización térmica, mecánica y morfológica de fibras naturales colombianas con potencial como refuerzo de biocompuestos. Revista Académica Colombiana de Ciencias Exactas, Físicas y Naturales, 41(161), 479–489.
Mora, W., & Ramón, B. (2017). Biocompuesto de fibra natural de palma cumare (Astrocaryum Chambira) y resina bioepoxy, aplicaciones industriales. Revista de la Asociación Española de Materiales Compuestos, 28–34.
Mora, W. (2017). Materiales biocompuestos reforzados con fibras naturales colombianas y matriz bioepoxy para aplicaciones en la industria automotriz (Tesis de maestría). Universidad de Pamplona, Colombia.
Monteiro, C., Calado, V., Rodriguez, A., & Margem, F. (2012). Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Materials Science & Engineering A, 557, 17–28.
Porras, A., Maranon, A., & Ashcroft, I. A. (2016). Thermo-mechanical characterization of Manicaria saccifera natural fabric reinforced poly-lactic acid composite lamina. Composites Part A, 81, 105–110.
Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., & Baskaran, R. (2013). Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers, 92, 1928–1933.
Sarikanat, M., Seki, S., Sever, K., & Durmuskahya, C. (2014). Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B, 57, 180–186.
Sanajy, M., Madhu, P., Jawaid, M., Senthamaraikannan, P., & Senthil, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566–581.
Shekeil, Y. A., Sapuan, S. M., & Algrafi, M. W. (2014). Materials & Design, 64, 330–333.
Sherman, L. M. (1999). Natural fibers: The new fashion in automotive plastics. Plastics Technology, 62–68.
Sydenstricker, T. H., Mochnaz, S., & Amico, S. C. (2003). Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polymer Testing, 375–380.
Thygesen, L. G. (2006). Properties of hemp fibre polymer composites—An optimisation of fibre properties using novel defibration methods and fibre characterisation. Denmark: Royal Veterinary and Agricultural University.
Vanegas, D., Celis, R. A., & Becerra, J. S. (2016). Modelo interdisciplinar de intervención pedagógico-didáctica propulsor de un proceso de enseñanza-aprendizaje de calidad. Revista Universidad y Sociedad, 8(1), 151–158.
Vanegas, D., Ramón, J. A., & Valencia, J. D. (2015). Aplicación del modelo heurístico significativo en la interpretación de la cultura ambiental. Revista FACE, 15(2), 107–116.
Vanegas, D., & López, A. (2015). Experiencia didáctica en el desarrollo de la competencia texto-lingüística como orientadora de la lectura y la escritura (estudio experimental). Diexpe. Experimenta Pedagógicamente, 1, 21–27.
Yusriah, L., Sapuan, S. M., Zainudin, E. S., & Mariatti, M. (2014). Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. Journal of Cleaner Production, 72, 174–180.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.