USO DE TECNOLOGÍAS DE LA INFORMACIÓN GEOGRÁFICA PARA LA CARACTERIZACIÓN DE LA VÍA ZAPAYÁN - EL BONGO, MAGDALENA, COLOMBIA

Autores/as

DOI:

https://doi.org/10.24054/raaas.v14i1.2745

Palabras clave:

Caracterización, Geoespacial, Zapayán, precisión, modelo digital de superficie

Resumen

El estado de la infraestructura vial contribuye al desarrollo socioeconómico de las comunidades facilitando el intercambio de bienes y servicios. La actualización de la base de datos de la red vial es una labor dispendiosa que involucra entidades gubernamentales, no gubernamentales e instituciones de educación. La presente investigación tiene por objetivo realizar la caracterización de la vía que comunica el casco urbano del municipio de Zapayán y el corregimiento El Bongo. Se utilizó la metodología general para reporte de información que conforma el Sistema Integral Nacional de Información de Carreteras, mediante la integración de tecnologías de información geográfica. Los resultados obtenidos muestran que los datos de geometría de la vía presentaron precisión centimétrica vertical y horizontal de ± 8 centímetros, demostrando confiabilidad para la generación de una base de datos detallada y fiable permitiendo la toma de decisiones con miras a la planeación, ejecución y mantenimiento de proyectos viales.

Citas

Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221–227. https://doi.org/10.1016/J.MEASUREMENT.2016.12.002 DOI: https://doi.org/10.1016/j.measurement.2016.12.002

Ahmed, R., & Mahmud, K. H. (2022). Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh. Remote Sensing Applications: Society and Environment, 26, 100729. https://doi.org/10.1016/j.rsase.2022.100729 DOI: https://doi.org/10.1016/j.rsase.2022.100729

Akgul, M., Yurtseven, H., Gulci, S., & Akay, A. E. (2018). Evaluation of UAV- and GNSS-Based DEMs for Earthwork Volume. Arabian Journal for Science and Engineering, 43(4), 1893–1909. https://doi.org/10.1007/S13369-017-2811-9/METRICS DOI: https://doi.org/10.1007/s13369-017-2811-9

Akturk, E., & Altunel, A. O. (2019). Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement, 136, 382–386. https://doi.org/10.1016/j.measurement.2018.12.101 DOI: https://doi.org/10.1016/j.measurement.2018.12.101

Bolivar, W., Quintero Ibañez, J. O., & Herrera Vásquez, E. (2019). VULNERABILIDAD FÍSICA EN LAS EDIFICACIONES DEL SECTOR DE BOCAGRANDE, CARTAGENA DE INDIAS; ANTE UN EVENTO DE TSUNAMI. Boletín Científico CIOH, 38(2). https://doi.org/10.26640/22159045.2019.508 DOI: https://doi.org/10.26640/22159045.2019.508

Castellanos, L., Serrano, S. y Becerra, W. M. (2020). Preferencia por morfoespecies de babosas en diferentes cultivos y ambientes del municipio Pamplona, Norte de Santander. Revista Ambiental Agua, Aire y Suelo (RAAAS), 11(1). DOI: https://doi.org/10.24054/aaas.v11i1.356 DOI: https://doi.org/10.24054/19009178.v1.n1.2020.356

Dubbini, M., Curzio, L. I., & Campedelli, A. (2016). Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: case study of the Roman castrum of Burnum (Croatia). Journal of Archaeological Science: Reports, 8,121–134. https://doi.org/10.1016/j.jasrep.2016.05.054 DOI: https://doi.org/10.1016/j.jasrep.2016.05.054

Emlid. (2021). Integración de ArcGIS Survey123 | Reach RS2/RS2+. https://docs.emlid.com/reachrs2/es/tutorials/integration/arcgis-survey123/

Fendi, K. G., Adam, S. M., Kokkas, N., & Smith, M. (2014). An Approach to Produce a GIS Database for Road Surface Monitoring. APCBEE Procedia, 9, 235–240. https://doi.org/10.1016/j.apcbee.2014.01.042 DOI: https://doi.org/10.1016/j.apcbee.2014.01.042

Fernández Álvarez, H., Álvarez-Narciandi, G., García-Fernández, M., Laviada, J., Álvarez López, Y., & Las-Heras Andrés, F. (2021). A Portable Electromagnetic System Based on mm-Wave Radars and GNSS-RTK Solutions for 3D Scanning of Large Material Piles. Sensors, 21(3), 757. https://doi.org/10.3390/S21030757 DOI: https://doi.org/10.3390/s21030757

Gianfranco, F., Mariangela, D., Patrizia, S., Edoardo, P., & Massimiliano, P. (2023). A GIS-supported methodology for the functional classification of road networks. Transportation Research Procedia, 69, 368–375. https://doi.org/10.1016/j.trpro.2023.02.184 DOI: https://doi.org/10.1016/j.trpro.2023.02.184

Gobernación del Magdalena. (2020). Plan de Desarrollo Departamental: Magdalena renace 2020-2023.

Herrera-Cuenca, M., Landaeta-Jiménez, M., Hernandez, P., Sifontes, Y., Ramírez, G., Vásquez, M., & Maingon, T. (2022). Exploring food security/insecurity determinants within Venezuela’s complex humanitarian emergency. Dialogues in Health, 1, 100084. https://doi.org/10.1016/j.dialog.2022.100084 DOI: https://doi.org/10.1016/j.dialog.2022.100084

Hidalgo-Crespo, J., Velastegui-Montoya, A., Zwolinski, P., Riel, A., & Amaya-Rivas, J. L. (2023). Formalization of recyclable waste transfer stations within the Grand Guayaquil. Procedia CIRP, 116, 456–461. https://doi.org/10.1016/J.PROCIR.2023.02.077 DOI: https://doi.org/10.1016/j.procir.2023.02.077

Landicho, J. A. (2018). A web-based geographical project monitoring and information system for the road and highways. Journal of Electrical Systems and Information Technology, 5(2), 252–261. https://doi.org/10.1016/J.JESIT.2016.10.011 DOI: https://doi.org/10.1016/j.jesit.2016.10.011

Mahecha, J. G., Castellanos, L. y Céspedes, N. (2020). Alternativas para Suplir la Carencia de Fósforo en Fresa y Disminuir la Contaminación Ambiental en Pamplona Norte de Santander. Revista Ambiental Agua, Aire y Suelo (RAAAS), 10(1). DOI: https://doi.org/10.24054/aaas.v11i1.384 DOI: https://doi.org/10.24054/aaas.v11i1.384

Mesas-Carrascosa, F. J., Notario-García, M. D., Meroño de Larriva, J. E., Sánchez de la Orden, M., & García-Ferrer Porras, A. (2014). Validation of measurements of land plot area using UAV imagery. International Journal of Applied Earth Observation and Geoinformation, 33, 270–279. https://doi.org/10.1016/j.jag.2014.06.009 DOI: https://doi.org/10.1016/j.jag.2014.06.009

Ministerio de Transporte. (2011, January 17). DECRETO 87 DE 2011. DOI: https://doi.org/10.1590/S1413-65382011000100007

Ministerio de Transporte. (2020, February). Resolución 0000412 del 26 de febrero de 2020.

Ministerio de Transporte. (2022). Transporte enCifras 2021: Anuario Nacional de Transporte. https://www.mintransporte.gov.co/publicaciones/9443/transporte-en-cifras/

Ministerio de Trasporte. (2008, July 16). Ley 1228 de 2008.

Nautiyal, A., & Sharma, S. (2021). Condition Based Maintenance Planning of low volume rural roads using GIS. Journal of Cleaner Production, 312, 127649. https://doi.org/10.1016/j.jclepro.2021.127649 DOI: https://doi.org/10.1016/j.jclepro.2021.127649

Niño Rondón, C. V., Castro Casadiego, S. A. y Ortíz Fonseca, D. M. (2021). Análisis de herramientas para desarrollar un sistema de apoyo ambiental para identificar residuos sólidos. Revista Ambiental Agua, Aire y Suelo (RAAAS), 12(2). https://ojs.unipamplona.edu.co/index.php/aaas/article/view/2572/3136

Nota, E. W., Nijland, W., & de Haas, T. (2022). Improving UAV-SfM time-series accuracy by co-alignment and contributions of ground control or RTK positioning. International Journal of Applied Earth Observation and Geoinformation, 109, 102772. https://doi.org/10.1016/j.jag.2022.102772 DOI: https://doi.org/10.1016/j.jag.2022.102772

Ogbe, M., & Lujala, P. (2021). Spatial crowdsourcing in natural resource revenue management. Resources Policy, 72, 102082. https://doi.org/10.1016/j.resourpol.2021.102082 DOI: https://doi.org/10.1016/j.resourpol.2021.102082

Outay, F., Mengash, H. A., & Adnan, M. (2020). Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transportation Research Part A: Policy and Practice, 141, 116–129. https://doi.org/10.1016/J.TRA.2020.09.018 DOI: https://doi.org/10.1016/j.tra.2020.09.018

Puc Hernández, F. Á. (2019). ANÁLISIS DEL ESTADO SUPERFICIAL DE LOS PAVIMENTOSUTILIZANDO SISTEMAS DE INFORMACIÓN GEOGRÁFICA. Ava Cient, 7(2), 25–37. http://www.chetumal.tecnm.mx/images/2019/12DICIEMBRE/AVACIENT/1/3.pdf

Saad, A. M., & Tahar, K. N. (2019). Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV). Measurement, 137, 647–654. https://doi.org/10.1016/j.measurement.2019.01.093 DOI: https://doi.org/10.1016/j.measurement.2019.01.093

Sattineni, A., & Hindman, J. (2017). Photogrammetric Models using Oblique Aerial Imagery for Construction Site Surveying. DOI: https://doi.org/10.22260/ISARC2017/0099

Silva-Balaguera, A., Leguizamón, O. D., & Valiente, L. L. (2018). Gestión de pavimentos basado en Sistemas de Información geográfica (SIG): una revisión. Ingeniería Solidaria, 14(26). https://doi.org/10.16925/in.v14i26.2417 DOI: https://doi.org/10.16925/in.v14i26.2417

Silva, L. de O., de Mello Bandeira, R. A., & Gouvêa Campos, V. B. (2017). The use of UAV and geographic information systems for facility location in a post-disaster scenario. Transportation Research Procedia, 27, 1137–1145. https://doi.org/10.1016/j.trpro.2017.12.031 DOI: https://doi.org/10.1016/j.trpro.2017.12.031

Wang, J., Wang, L., Jia, M., He, Z., & Bi, L. (2020). Construction and optimization method of the open-pit mine DEM based on the oblique photogrammetry generated DSM. Measurement, 152, 107322. https://doi.org/10.1016/j.measurement.2019.107322 DOI: https://doi.org/10.1016/j.measurement.2019.107322

Xiang, J., Chen, J., Sofia, G., Tian, Y., & Tarolli, P. (2018). Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environmental Earth Sciences, 77(6), 1–18. https://doi.org/10.1007/S12665-018-7383-9/FIGURES/9 DOI: https://doi.org/10.1007/s12665-018-7383-9

Zuo, C., & Birkin, M. (2019). Modelling the economic and demographic impacts of major transport infrastructure provision: A case study of UK regions. Transportation Research Part A: Policy and Practice, 125, 207–222. https://doi.org/10.1016/j.tra.2018.01.025 DOI: https://doi.org/10.1016/j.tra.2018.01.025

Descargas

Publicado

2024-02-12 — Actualizado el 2023-05-08

Versiones

Cómo citar

Galvis, J. E., Olivella Bendeck, E. A., & Araujo Medina, L. C. (2023). USO DE TECNOLOGÍAS DE LA INFORMACIÓN GEOGRÁFICA PARA LA CARACTERIZACIÓN DE LA VÍA ZAPAYÁN - EL BONGO, MAGDALENA, COLOMBIA. REVISTA AMBIENTAL AGUA, AIRE Y SUELO, 14(1), 12–24. https://doi.org/10.24054/raaas.v14i1.2745 (Original work published 12 de febrero de 2024)

Número

Sección

Artículos