IMPLEMENTACIÓN DE TÉCNICAS DE RECONOCIMIENTO DE PATRONES (LEAST SQUARE SUPPORT VECTOR MACHINES) EN PROCESOS DE SELECCIÓN DE PARÁMETROS CARACTERÍSTICOS APLICADOS A SISTEMAS METABOLÓMICOS
Palabras clave:
Metabolómica, HNMR, LS-SVM, COWResumen
En este artículo se presenta una metodologíaque involucra, técnicas de análisis multivariable y una etapa de pre-procesamiento con el fin de determinar metabolitos característicos en un determinado espectro. Este método novedoso permitió determinar
que ciertos metabolitos son modificados por las diferentes concentraciones y además de conocer la funcionalidad de LS-SVM en datos NMR. También se logró validar procesos como: alineamiento de picos, normalización, corrección de línea base y análisis
multienergía, en datos metabolómicos en aceites de oliva y avellana puros y mezclados con alteraciones de 2%, 5%, 10%, 20% y 30%.
Citas
Oliver S.G, Winson MK, Kell D.B, et al.
Systematic functional analysis of the yeast
genome.TrendsBiotechnol 1998; 16:373–8.
. Vladimir Shulaev, Metabolomics technology
and bioinformatics. Briefings in
Bioinformatics.2006; Vol. 7. No 2. 128 -139.
. Viant MR, Rosenblum E.S, Tieerdema RS.
NMR-based metabolomics: a powerful
approach for characterizing theeffects of
environmental stressors on organism health.
Environ SciTechnol 2003; 37:4982–9.
. Hong-Seok Son, Ki Myong Kim, Frans Van
Den Berg,Geum-Sook Hwang, Won-Mok
Park, Cherl-Ho Lee, and Young-
ShickHong,J. 1H Nuclear Magnetic
Resonance-Based Metabolomic
Characterization of Wines by Grape
Varieties and Production Areas.Agric. Food
Chem. 2008, 56, 8007–8016
. D. F. Brougham, G. Ivanova, M. Gottschalk,
D.M. Collins, A. J. Eustace, R. O’Connor,
and J. Havel,Artificial Neural Networks for
Classification in Metabolomic Studies
ofWhole Cells Using 1H NuclearMagnetic
Resonance.
. Richard J. Gilbert, Helen E. Johnson, Michæl
K. Winson, Jem J.
Rowland,RoystonGoodacre, Aileen R.
Smith, Michæl A. Hall and Douglas B. Kell.
Genetic Programming as an Analytical Tool
for MetabolomeData;Institute of Biological
Sciences, University of Wales, Aberystwyth,
Ceredigion.
. Z. Ramadan, D. Jacobs, M. Grigorov, S.
Kochhar. Metabolic profiling using principal
component analysis, discriminant partial
least squares, and genetic algorithms.
Elsevier, Talanta 68 (2006) 1683–1691
. Darwin on the origin of species by means of
natural selection. Canadian Naturalist and
Geologist 5:100-120.
. Vapnik, V. (1998b).The support vector
method of function estimation. In J. A. K.
Suykens, & J. Vandewalle, (Eds.), Nonlinear
Modeling: Advanced Black-box Techniques.
Boston: Kluwer Academic Publishers.
. Jan Luts, Fabian Ojeda, Raf Van de
Plasa,Bart De Moora, Sabine Van Huffela,
Johan A.K. Suykensa , A tutorial on support
vector machine-based methods for
classification problems in chemometrics.
Elsevier AnalyticaChimicaActa 665 (2010)
–145
. Raamsdonk LM, Teusink B, Broadhurst D,
et al. A functional genomics strategy that
uses metabolome data to reveal the
phenotype of silent mutations. Nat
Biotechnol 2001;19:45–50.
. Catchpole GS, Beckmann M, Enot DP, et al.
Hierarchical metabolomics demonstrates
substantial compositional similarity between
genetically modified and conventional potato
crops. PNAS 2005;102:14458–62.
. Nicholson JK, Lindon JC, Holmes E.
‘Metabonomics’ understanding the metabolic
responses of living systems
topathophysiological stimuli via multivariate
statistical analysisof biological NMR
spectroscopic data. Xenobiotica 1999;
:1181–9.
. Watkins SM, German J. B. Metabolomics
and biochemical profiling in drug discovery
and development.CurrOpinMolTher
;4:224–8.
. Watkins SM, Reifsnyder PR, Pan HJ, et al.
Lipid metabolome-wide effects of the
PPARgammaagonistrosiglitazone. J Lipid
Res 2002;43:1809–17.
. [16]Jennifer L. Spratlin,NatalieJ. Serkova,
and S. Gail Eckhardt, Clinical Applications
ofMetabolomics in Oncology:
AReview.ClinCancerRes2009;15:431-440.
. Fiehn O, Kopka J, Trethewey RN, et al.
Identification of uncommon plant
metabolites based on calculation ofelemental
compositions using gas chromatography
andquadrupole mass spectrometry. Anal
Chem 2000; 72: 3573–80.
. Georgia Vigli, AngelosPhilippidis,
Apostolos Spyros, and PhotisDais,
Classification of Edible Oils by Employing
P and 1H NMR Spectroscopy in
Combination with Multivariate Statistical
Analysis. A Proposal for the Detection of
Seed Oil Adulteration in Virgin Olive Oils,J.
Agric. Food Chem. 2003, 51, 5715-5722
. Mannina Luisa, Segre Annalaura,High
Resolution Nuclear Magnetic Resonance:
From Chemical Structure to Food
Authenticity,Grasas y Aceites, Vol. 53. Fasc.
(2002), 22-33.
. Niels-Peter Vest Nielsen, Jens Michael
Carstensen, JørnSmedsgaard ,*Aligning of
single and multiple wavelength
chromatographic profiles for chemometric
data analysis using correlation optimized
warping. Journal of Chromatography A, 805
(1998) 17–35.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.