Tecnologías no convencionales que transforman energía eléctrica a energía térmica para corte de metales: una revisión
DOI:
https://doi.org/10.24054/sei.v2i1.724Palabras clave:
Mecanizado no convencional, electroerosión, láser, plasma, haz de electrones, metalesResumen
Las tecnologías de mecanizado no convencional UCM son aquellas que utilizan energías diferentes a la mecánica para realizar mecanizados complejos, y en las cuales la herramienta de corte no toca el material. Lo anterior ha permitido tener mayor alcance que las convencionales en Este artículo presenta una revisión de la aplicación de las tecnologías no convencionales de fabricación que transforman energía eléctrica a térmica de mayor relevancia, con el fin de exponer aquellos que son más convenientes para cortar metales de mayor uso en la industria, así como sus beneficios y retos más relevantes. Para ello se realizó una revisión bibliográfica, con el fin de encontrar investigaciones recientes que muestren un marco general sobre el uso actual de las tecnologías de manufactura. Diferentes estudios experimentales evidenciaron las ventajas de este tipo de mecanizado frente al tradicional, brindando soluciones para el corte de distintos tipos de metales como las súper-aleaciones y acero. Estas tecnologías actualmente son muy importantes para las empresas como la aeronáutica, la automotriz y la naval. Se pudo concluir que a pesar de que la UMC de tipo térmico consume mayor energía, es más costoso de implementar y presenta algunos retos como la generación de capa de refundición y daño por calor, también ofrece mejores beneficios a las industrias más exigentes en cuanto a calidad y tiempo de mecanizado.
Citas
Ananthakumar, K., Rajamani, D., Balasubramanian, E., & Davim, J. P. (2019). Measurement and optimization of multi-response characteristics in plasma arc cutting of Monel 400 TM using RSM and TOPSIS. Measurement, 135, 725–737. https://doi.org/10.1016/j.measurement.2018.12.010
Anwar, S., Abdullah, F. M., Alkahtani, M. S., Ahmad, S., & Alatefi, M. (2019). Bibliometric analysis of abrasive water jet machining research. Journal of King Saud University - Engineering Sciences, 31(3), 262–270. https://doi.org/10.1016/j.jksues.2018.02.002
Bhowmick, S., Basu, J., Majumdar, G., &
Bandyopadhyay, A. (2018). Experimental study of plasma arc cutting of AISI 304 stainless steel. Materials Today: Proceedings, 5(2), 4541–4550. https://doi.org/10.1016/j.matpr.2017.12.024
Biri, C., Marinescu, V., Bologa, O., Breaz, R., Deac, C., & Tera, M. (2010). Improving the Manufacturing Accuracy of the Profiling Machines. 335–338. https://doi.org/10.3182/20100908-3-PT-3007.00077
Brant, A., & Sundaram, M. (2016). A Novel Electrochemical Micro Additive Manufacturing Method of Overhanging Metal Parts Without Reliance on Support Structures. Procedia Manufacturing, 5, 928–943. https://doi.org/10.1016/j.promfg.2016.08.081
Chaitanya, A. K., Babu, D. K., & Kumar, K. V. N. G. (2019). Experimental study on surface roughness by using abrasive jet machine. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2019.05.343
Chandra, B., & Singh, H. (2015). Machining of aluminium metal matrix composites with Electrical discharge machining - A Review. Materials Today: Proceedings, 2(4–5), 1665–1671. https://doi.org/10.1016/j.matpr.2015.07.094
Duan, W., Mei, X., Fan, Z., Li, J., Wang, K., & Zhang, Y. (2019). Electrochemical corrosion assisted laser drilling of micro-hole without recast layer. Optik - International Journal for Light and Electron Optics, 163577. https://doi.org/10.1016/j.ijleo.2019.163577
Dwivedi, A. P., & Choudhury, S. K. (2016). Increasing the Performance of EDM Process Using Tool Rotation Methodology for Machining AISI D3 Steel. 46, 131–134. https://doi.org/10.1016/j.procir.2016.03.207
Gamage, J. R., & Desilva, A. K. M. (2015). Assessment of research needs for sustainability of unconventional machining processes. Procedia CIRP, 26, 385–390. https://doi.org/10.1016/j.procir.2014.07.096
Gangil, M., Pradhan, M. K., & Purohit, R. (2017). Review on modelling and optimization of electrical discharge machining process using modern Techniques. Materials Today: Proceedings, 4(2), 2048–2057. https://doi.org/10.1016/j.matpr.2017.02.050
Gowthaman, P. S., & Jeyakumar, S. (2019). A Review on machining of High Temperature Aeronautics Super- alloys using WEDM. Materials Today: Proceedings, 18, 4782–4791. https://doi.org/10.1016/j.matpr.2019.07.466
Groover, M. (2011). fundamentos de manufactura moderna (1ra edicio).
Guillermo Jiménez-Chavarro, Vieira-Porto Arthur José, H.-T. R. (2016). Optimización del mecanizado de agujeros profundos de pequeño diámetro por electroerosión usando la metodología Taguchi Small deep hole drilling electro discharge machining process optimization using Taguchi method Otimização da usinagem de buracos profund. 25(42), 111–122.
Guimarães, B., Figueiredo, D., Fernandes, C. M., Silva, F. S., Miranda, G., & Carvalho, O. (2019). Laser machining of WC-Co green compacts for cutting tools manufacturing. International Journal of Refractory Metals & Hard Materials, 81(February), 316–324. https://doi.org/10.1016/j.ijrmhm.2019.03.018
Ibarra, G. G. (2014). ESTUDIO DE MAQUINABILIDAD DE 2 SUPERALEACIONES INCONEL 617 Y 718 (UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN). Retrieved from http://eprints.uanl.mx/3991/1/1080253632.pdf
Maharana, H. S., Kumar, R., Murty, S. V. S. N., Ramkumar, J., & Mondal, K. (2019). Surface micro-texturing of dual phase steel and copper by combining laser machining and electrochemical dissolution. Journal of Materials Processing Tech., 273(June), 116260. https://doi.org/10.1016/j.jmatprotec.2019.116260
Marimuthu, S., Antar, M., & Dunleavey, J. (2019). Characteristics of micro-hole formation during fi bre laser drilling of aerospace superalloy. Precision Engineering, 55(June 2018), 339–348. https://doi.org/10.1016/j.precisioneng.2018.10.002
Mouralova, K, Kovar, J., Klakurkova, L., Bednar, J., Benes, L., & Zahradnicek, R. (2018). Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement, 114(September 2017), 169–176. https://doi.org/10.1016/j.measurement.2017.09.040
Mouralova, Katerina, Klakurkova, L., Matousek, R., Prokes, T., Hrdy, R., & Kana, V. (2018). Influence of the cut direction through the semi-finished product on the occurrence of cracks for X210Cr12 steel using WEDM. Archives of Civil and Mechanical Engineering, 18(4), 1318–1331. https://doi.org/10.1016/j.acme.2018.04.004
Nagimova, A., & Perveen, A. (2019). A review on Laser Machining of hard to cut materials. Materials Today: Proceedings, 18, 2440–2447. https://doi.org/10.1016/j.matpr.2019.07.092
Pant, P., & Bharti, P. S. (2019). Electrical Discharge Machining ( EDM ) of nickel-based nimonic alloys : A review. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2019.09.007
Parmar, V., Kumar, A., Prakash, G. V., & Datta, S. (2019). Investigation , modelling and validation of material separation mechanism during fi ber laser machining of medical grade titanium alloy Ti6Al4V and stainless steel SS316L. Mechanics of Materials, 137(February), 103125. https://doi.org/10.1016/j.mechmat.2019.103125
Patel, P., Nakum, B., Abhishek, K., & Kumar, V. R. (2018). Optimization of Surface Roughness in Plasma Arc Cutting of AISID2 Steel Using TLBO. Materials Today: Proceedings, 5(9), 18927–18932. https://doi.org/10.1016/j.matpr.2018.06.242
Patel, P., Soni, S., Kotkunde, N., & Khanna, N. (2018). Study the effect of process parameters in plasma arc cutting on Quard-400 material using analysis of variance. Materials Today: Proceedings, 5(2), 6023–6029. https://doi.org/10.1016/j.matpr.2017.12.206
Prasad, K., & Chakraborty, S. (2018). A decision guidance framework for non-traditional machining processes selection. Ain Shams Engineering Journal, 9(2), 203–214. https://doi.org/10.1016/j.asej.2015.10.013
Salonitis, K., & Vatousianos, S. (2012). Experimental Investigation of the Plasma Arc Cutting Process. 3, 287–292. https://doi.org/10.1016/j.procir.2012.07.050
Stoker, M. R. (2008). Electricity and magnetism. Anaesthesia and Intensive Care Medicine, 10(1), 62–64. https://doi.org/10.1016/j.mpaic.2008.11.013
Suchánek, L., & Zetková, I. (2015). Evaluation of the Surface Small Holes Drilled by Unconventional Methods. Procedia Engineering, 100, 1582–1590. https://doi.org/10.1016/j.proeng.2015.01.531
Sureban, R., Kulkarni, V. N., & Gaitonde, V. N. (2019). Modern Optimization Techniques for Advanced Machining Processes – A Review. Materials Today: Proceedings, 18, 3034–3042. https://doi.org/10.1016/j.matpr.2019.07.175
v. Alderete gatica. (2013). Planeacion y manufactura de un herramental mecanico para el desprendimiento de la cascara de haba seca. universidad Tecnologica de la mixteca.
Velpula, S., Eswaraiah, K., & Chandramouli, S. (2019). Prediction Of Electric Discharge Machining Process Parameters Using Artificial Neural Network. Materials Today: Proceedings, 18, 2909–2916. https://doi.org/10.1016/j.matpr.2019.07.160
Wu, H., Zou, P., Yan, W., Cao, J., & Ehmann, K. F. (2019). MICRO WAVE PATTERNS BY VIBRATING-LENS ASSISTED LASER MACHINING. Journal of Materials Processing Tech., 116424. https://doi.org/10.1016/j.jmatprotec.2019.116424
Z. Q. Deng, Y. W. Zhu, F. Wang, X. Gu, D. Y. (2017). ANALYSIS AND EXPERIMENTAL STUDY OF VIBRATION SYSTEM CHARACTERISTICS OF ULTRASONIC COMPOUND ELECTRICAL MACHINING. 49(1), 37–44. https://doi.org/10.1007/s11223-017-9839-7
Zhang, Y., Xu, Z., Wang, Y., Ni, Q., & Ling, X. (2019). Surface-improvement mechanism of hybrid electrochemical discharge process using variable- amplitude pulses. Chinese Journal of Aeronautics, (October). https://doi.org/10.1016/j.cja.2019.09.003
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 SEMILLEROS DE INVESTIGACIÓN
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.