Impact evaluation of distributed generation in the transmission network

Authors

  • Walter Villa Acevedo Universidad de Antioquia
  • Jhon Mario Rendón Universidad de Antioquia
  • María López-Lezama Universidad de Antioquia

DOI:

https://doi.org/10.24054/rcta.v3iEspecial.857

Keywords:

Distributed generation, solar photovoltaic system, wind power, ransmission network, and virtualpower plants

Abstract

Distributed generation (DG) is definedas small-scale electricity productionin the distribution network near final users. In the last years,the participation of DG in distribution systemshas increased considerably due to factors that include technological advances in small-scale generation and a renewed interest in environmental issues. In this context, it is important to have studies that assess its impact not only at the level of the distribution networksbut also in transmission networks. This paper presentsa methodology to assess the impacts of GD on the transmission network in terms of active and reactive power losses, voltage profile, and congestionlevel of transmission lines, emissions and spinningreserves. These impacts are evaluated through indexes adapted from the technical literature. Furthermore, probabilistic power flows as well as the concept ofvirtual power plantare used for modeling renewable DG(solar and wind). Results are presented in the IEEE 39-bustest system that demonstrates the applicability of the proposed methodology.

References

Abdullah, M. A., A. P. Agalgaonkar, y K. M. Muttaqi. (2011). “Optimal allocation of renewable energy resources for minimizing emissions in distribution networks”. IET Conference on Reliability of Transmission and Distribution Networks.

Alami, A., y R. Batista. (2009). “performance analysis of a large scale grid connected solar system”. 34th IEEE Photovoltaic Specialists Conference (PVSC).

Aliyu, H., y J. T. Agee. (2016). “Electric energy from the hybrid wind-solar thermal power plants”. IEEE PES Power Africa,

Allan, R. N., P. Djapic, y G. Strbac. (2006). “Assessing the Contribution of Distributed Generation to System Security”. International Conference on Probabilistic Methods Applied to Power Systems.

Bohórquez, A. (2018). “Microturbina Pelton, una solución real de energía para zonas no interconectadas”. Revista Colombiana de Tecnologías de Avanzada. Vol. 1, No 31.

Chiradeja, P. (2005). “Benefit of Distributed Generation: A Line Loss Reduction Analysis”. IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific.

Gil, H. A., y G. Joos. (2006). “On the Quantification of the Network Capacity Deferral Value of Distributed Generation”. IEEE Trans. on Power Systems, Vol. 21, No 4.

Gómez, J., Sandoval C.L., y Coronel, J.J. (2018). “Análisis de prospectiva del sector energético de Colombia para la integración de fuentes fotovoltaicas en los sistemas de distribución de energía electica aplicando una revisión en bases de datos científicas”. Revista Colombiana de Tecnologías de Avanzada, Vol. 2, No 32.

Hung, D. Q., N. Mithulananthan, y R. C. Bansal. (2010). “Analytical Expressions for DG Allocation in Primary Distribution Networks”. IEEE Trans. on Energy Conversion, Vol. 25, No 3.

IDEAM. (2018). "Atlas Interactivo - IDEAM. http://atlas.ideam.gov.co/presentacion/. (Consultado: 14 septiembre 2018)

Jenkins, N, Jenkins N, Janaka E, y Goran S. (2010). Distributed Generation. Editorial Institution of Engineering and Technology.

Jiang, F., Z. Zhang, T. Cao, B. Hu, y Z. Piao. (2013). “Impact of distributed generation on voltage profile and losses of distribution systems”. 32nd Chinese Control Conference.

Kumawat, P., Sarfaraz, y A. Tandon. (2016). “An analytical approach for optimal allocation of DG unit in distribution system”. IEEE 7th Power India International Conference (PIICON).

Li, J., y J. Zhao. (2015). “Low carbon unit commitment for power system with wind farms and carbon capture devices based on DE-BBO algorithm”. International Conference on Renewable Power Generation.

López-Lezama, J. M., Contreras, J y Padilha-Feltrin, A. (2012). “Location and contract pricing of distributed generation using a genetic algorithm”. International Journal of Electrical Power & Energy Systems Vol. 36 No. 1.

Nikolaidis, A, Gonzalez-Longatt, F. M. y Charalambous, C. A. (2013). “Indices to Assess the Integration of Renewable Energy Resources on Transmission Systems”. Conference Papers in Energy.

Ochoa, L. F., A. Padilha-Feltrin, y G. P. Harrison. (2006). “Evaluating distributed generation impacts with a multiobjective index”. IEEE Trans. on Power Delivery Vol. 21 No. 3.

Ochoa, L. F., A. Padilha-Feltrin, y G. P. Harrison. (2008). “Evaluating Distributed Time-Varying Generation Through a Multiobjective Index”. IEEE Trans. on Power Delivery Vol. 23, No 2.

Parrado, A., Osma G. A., y Ordoñez, G. (2019). “Instalación de un sistema fotovoltaico en el edificio de ingeniería eléctrica en la Universidad Industrial de Santander”. Revista Colombiana de Tecnologías de Avanzada. Vol. 1, No. 33.

Papazoglou, T. M., y A. Gigandidou. (2003). “Impact and benefits of distributed wind generation on quality and security in the case of the Cretan EPS”. CIGRE/IEEE PES International Symposium Quality and Security of Electric Power Delivery Systems.

Suvarchala, K., T. Yuvaraj, y P. Balamurugan. (2018). “A brief review on optimal allocation of Distributed Generation in distribution network”. 4th International Conference on Electrical Energy Systems.

UPME. (2006). “Atlas del Viento de Colombia”. http://www.upme.gov.co/Atlas_Viento.htm. (Consultado: 14 septiembre 2018)

Villa, W.M., J.L. Rueda, S. Torres, y W.H. Peralta. 2012. “Identification of voltage control areas in power systems with large scale wind power integration”. Transmission and Distribution: Latin America Conference and Exposition.

Yang, H., J. Zhang, J. Qiu, S. Zhang, M. Lai, y Z. Y. Dong. 2018. “A Practical Pricing Approach to Smart Grid Demand Response Based on Load Classification”. IEEE Trans. on Smart Grid Vol. 9 No 1.

Zimmerman, R.D., Murillo-Sánchez, C.E. y Thomas, R.J. (2011). “MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education”. IEEE Trans. on Power Systems Vol. 26 No. 1.

Published

2021-04-13 — Updated on 2020-08-14

Versions

How to Cite

Villa Acevedo, W., Rendón, J. M., & López-Lezama, M. (2020). Impact evaluation of distributed generation in the transmission network. COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES, 3(2), 72–79. https://doi.org/10.24054/rcta.v3iEspecial.857 (Original work published April 13, 2021)

Issue

Section

Artículos