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Abstract: This paper provides a systematic literature review on the application of machine
learning techniques for anomaly detection within web services and distributed systems. Our
methodology involved structured queries across major academic databases, including IEEE
Xplore, Scopus, ScienceDirect, and the ACM Digital Library, covering research published
between 2021 and 2025. Following the application of rigorous inclusion and exclusion
criteria, a final cohort of 50 relevant articles was selected for detailed analysis. These
studies were categorized based on data types, learning paradigms, application domains, and
evaluation metrics to pinpoint current trends, strengths, and inherent limitations in the field.
Our findings highlight a clear shift toward hybrid models and deep learning architectures,
alongside a growing emphasis on explainability and scalability in distributed environments.
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Resumen: Este articulo presenta una revision sistematica de la literatura sobre el uso de
técnicas de Machine Learning aplicadas a la identificacion de anomalias en servicios web
y sistemas distribuidos. El proceso de revision se desarrolld a partir de busquedas
estructuradas en bases de datos académicas reconocidas, incluyendo IEEE Xplore, Scopus,
ScienceDirect y ACM Digital Library, considerando publicaciones entre 2021 y 2025. Se
aplicaron criterios explicitos de inclusion y exclusion, lo que permitié seleccionar un
conjunto final de cincuenta articulos relevantes. Los estudios analizados se organizaron
segun tipo de dato, enfoque de aprendizaje, dominio de aplicacién y métricas empleadas,
con el fin de identificar tendencias, fortalezas y limitaciones del estado del arte. Los
resultados evidencian una creciente adopcion de modelos hibridos y arquitecturas
profundas, asi como un interés sostenido por la explicabilidad y la escalabilidad en entornos
distribuidos.
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1. INTRODUCTION

Today, digital infrastructure faces unprecedented
pressure due to the massification of network access,
which by 2025 has reached 74% of the world's
population [1], [2], equivalent to 6 billion
individuals, as illustrated in Figure 1.
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Fig. 1. Internet user number
Fountain: International Telecommunication Union (ITU)

This growth is closely linked to the adoption of
mobile devices. By the end of 2024, approximately
4.4 billion people had a smartphone to access the
internet, representing 54% of the world's population.
Furthermore, over 80% of these connections are
made via 4G and 5G networks [3]. This is further
compounded by the fact that, by the beginning of
2025, there were 5.56 billion internet users, with
58% of the global population accessing the internet
via their own devices. This has allowed for the
consolidation of a massive web services ecosystem
where video traffic accounts for 75.9% of the total
volume of cellular data [1]. This volume of users
operates on a large-scale network architecture, in
which data traffic has grown exponentially. A
consumption of approximately 1.5 zettabytes is
projected, which has motivated the adoption of
Machine Learning- based architectures for the
proactive detection of anomalies [2] that guarantee
the correct consumption of services.

The infrastructure for this demand is approximately
6,111 public data centers worldwide by the end of
2025 [4], whose operational capacity faces critical
technical pressure due to the integration of
generative Artificial Intelligence (Al) applications
that require extreme cloud processing power
compared to other popular services [4].

University of Pamplona
LILD.T.A.

210

Although mobile broadband coverage currently
reaches 96% of the global population [2], the
sophistication of 5G networks, which cover 55.1%
of the world's population, adds variables with a high
technical complexity that make it difficult to
monitor and detect atypical traffic patterns [2], [3].

In this context, anomaly detection plays a key role
in preserving the operational stability of web service
providers, especially in scenarios characterized by
high demand variability. The central problem lies in
the fact that traditional methods, based on static
rules and fixed thresholds, may be insufficient to
manage the dynamic nature and demand spikes
generated by high-concurrency events on streaming
platforms, e -commerce sites, financial services, and
other platforms.

Technical complexity is pressured by the diversity
of devices and the transition to 5G, as mentioned
above, which already covers 55.1% of the world's
population, but coexists with 16% of users who still
depend on 3G technologies or basic devices [2],
which can be seen in Figure 2, generating critical
disparities in Quality of Service ( QoS ) and Quality
of Experience ( QoE ).

AoATAREPORTAL TRVAZL.

Fig. 2. Trend of devices used to access the internet.
Source: Digital 2025 Global Overview Report.

The objective of this article is to conduct a
systematic literature review on methods for
identifying anomalies in different web fields such as
streaming services and IoT, among others, and to
establish a framework of variables that can be used
for future studies.

2. METHODOLOGY

This study is a systematic literature review, seeking
to classify and synthesize, in a structured manner,
the existing knowledge on how anomaly
identification has been addressed in the field of
Machine Learning. Its approach is mixed,
combining qualitative analysis—examining
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approaches, trends, and conceptual frameworks—
with quantitative elements, such as classifying
articles by data type, learning methods, and
objectives.

It should be clarified that this study does not aim to
experimentally validate hypotheses, but rather to
analyze how the scientific community has addressed
the problem of anomaly detection, what solutions
have been proposed, and what gaps still remain,
offering a view of the state of the art that serves as a
basis for future research and development.

2.2 Methodological design

The review focused on scientific articles published
between 2021 and 2025 that addressed the detection
or prediction of anomalies using machine learning
techniques applied to web services, distributed
systems, cloud infrastructures, telecommunications
networks, and the Internet of Things ( 10T ). Both
experimental research and reviews and surveys were
considered.

The methodological process relied on predefined
inclusion and exclusion criteria, a structured search
strategy, and an analysis method that allowed for
consistent comparison of studies.

2.3 Inclusion and exclusion criteria
2.3.1 Inclusion criteria

Articles that met the following criteria were
included in the review:

e Publications related to the detection or
prediction of anomalies using Machine
Learning.

e Studies applied to web services, cloud
systems, microservices, networks, loT or
large-scale digital environments.

e Literature reviews or surveys that analyze
trends, challenges, or comparisons of
techniques.

e Articles published between 2021 and 2025.

e Atrticles published in journals whose quartile
is 1 or 2. Exceptions are accepted if the
article is published in reliable sources.

2.3.2 Exclusion criteria

Studies that presented any of the following
characteristics were excluded:
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e Articles whose publication date is prior to
2021.

e Articles with a focus on industries other than
those mentioned in the inclusion criteria.

e Articles that are not related to the use of
Machine Learning.

e Atrticles published in journals with quartiles
below 2.

2.4 Sample

In this research, 50 scientific articles were found,
comprising 60% experimental studies that propose
or evaluate machine learning models for anomaly
detection, and 40% literature reviews and surveys
that summarize and analyze the state of the art. This
is represented in Figure 3. The aim was to combine
practical evidence with theoretical analyses,
facilitating a more comprehensive understanding of
the topic.

2.5 Instruments for collecting and analyzing
information

To determine which resources were useful for this
study, and following the inclusion and exclusion
criteria, an analysis matrix was created, designed to
systematically collect the most relevant information
from each selected article. This tool allowed for
consistent comparison of the studies and reduced
potential biases during the analysis. The matrix
included the following aspects:

Year of publication

Type of study
Application domain

Type of data used
Learning approach
unsupervised, or blended)
Machine Learning techniques used
e  Main objective of the study

e  Main results and limitations

(supervised,

The above was established based on practices found
in previous systematic reviews, some of which are
part of this study.
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Tipos de articulos

@ Investigacion @Revision/Survey

Fig. 3. Types of articles used.
Source: own elaboration.

2.6 Procedure

The research was conducted in several consecutive
stages:

e Phase 1: The research topic was delimited and
the objectives were defined, focused on
analyzing the use of Machine Learning for the
detection of anomalies in massive web

services.
e Phase 2: A systematic search was conducted in
recognized academic databases, using

combinations of keywords related to anomaly
detection, Machine Learning, web services,
cloud computing and loT.

e Phase 3: The articles found were initially
evaluated by title and abstract. Then, the full
text of the preselected studies was reviewed to
verify compliance with the established criteria.

e Phase 4: Relevant information from each
article was recorded in the analysis matrix.
From this data, descriptive analyses were
performed to identify trends, predominant
approaches, and areas of application.

e Phase 5: The results were organized, building
the current research and defining the basis for
future lines of work.

3. RESULTS

The results presented in this section correspond to
an analytical synthesis of the findings reported in the
reviewed studies, and not to any experimentation
carried out by the authors.

3.1. Quantitative evaluation of models and
architectures
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The analysis of studies reporting quantitative
validations, summarized in Table 1, suggests that
domain specialization is a recurring factor
associated with the performance of the evaluated
models [5], [6], [7] - In the reviewed studies on high-
speed environments, such as 10T and 6G networks,
outstanding performance is reported for techniques
based on LSH and hybrid approaches, with
accuracies close to 100% in certain datasets [8], [9].
Conversely, in critical security or medical domains,
graph and attention architectures (GNN,
Transformers) dominate the capture of nonlinear

dependencies [10], [11].

Table 1: Analysis on evaluation, proposal or comparison of

models with performance metrics

Model / Algorithm Reference Key Metric
Dataset

LSH + Random ToN-1oT, Accuracy:

Forest [8] MQTT- loT 99.82%

HABBAS ( CICDDO0S2019 Accuracy:

AdaBoost + 99.95%

Bagging ) [12]

AE (Vector CIDDS-001 F1 score: 100%

Reconstruction

Error) [13]

WDLog (Wide & HDFS, BGL F1-score >

Deep Learning ) 90%

[14]

CCTAK (TCN + SKAB, SWaT AUC-ROC:

KAN + VAE) [15] 0.8191

GIN (Graph Att. + MSL, SMAP F1 score:

Informer ) [10] 0.9604

SMOTETomek + WSN-DS Accuracy:

ML Models [16] 99.92%

Diner (Memory AE  GAIA, NAB F1 score: 0.706

+SNR) [17]

AnyLog (BERT + HDFS, BGL Accuracy:

SOM + AE) [18] 95.0%

AADS (Online Breast Cancer, F1-score:

Clustering ) [19] lonosphere 76.13%

DGMM + ML Cellular Traffic RMSE: 0.026

Ensemble [20]

XMLAD ( Decision  NokiaFL (Real) Recall : 100%
Tree Logic) [21]
MDI vs Deep UCR Archive AUC-ROC:
Learning [22] 0.66
Deep Isolation Tabular / Graph/  AUC-PR:
Forest (DIF) TS +144% vs iF
[23], [24]

C-LSTM-AE [25] Yahoo Webscope  Best F1 vs

S5 CNN/RNN
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LSTM-Markov Smart City AD Efficiency:
Hybrid [26] Sensors 96.03%
HGN2HIA ( QoS Web p- value : 0.005
Heterog. Graph Services

Att.) [27]

DDQN-PER (RL) Occupancy Recall :

[28] Detection 97.10%

Ttrees (CIAN MONROE, Accuracy:
Methodology ) [29]  Nokia 99.6%
Generalized iForest ~ Benchmarks Superior AUC-
(GIF) [30] (Aloi) PR

CNN (1D, 2D, 3D) 10T-DS-2 Accuracy :
Models [6] >99.7%
Multi-method TS SWAT, SMD LSTM AUC:
Evaluation [31] 0.863
Feedback K- means  Web Service QoS  RMSE: 0.051
[32]

CAWAL Web Portal Logs ~ Accuracy:
Framework [7] 92.5%

XGBoost ( African CICIDS2017 F1 score: 0.987
J.)[33]

VAE Stability Wireless Comm. 134 anomalies
Analysis [34] detected.

POT Threshold Firewall logs 70% of Opt.
Selection [35] MCC

Source: own elaboration.

3.2. Theoretical and taxonomic synthesis of the

literature

Table 2 shows an analysis of the literature whose
results focus on identifying relevant findings or
challenges, such as the evolution from statistical
filtering to explainable anomaly detection (XAD)
methods [36], [37].

Some reviewed works point to the phenomenon
known as “Clever Hans”, in which complex models
achieve high precision by relying on spurious
correlations of the data set [36].

Table 2: Analysis of review articles, taxonomy, and theoretical

frameworks
Focus Datasets / Outstanding
Benchmarks Discovery or
Analyzed Challenge
Taxonomy of KDD Cup 99/98,  Classification into 7
52 algorithms NSL-KDD, UCI mechanisms;
[38], [39] Repository isolation methods

are the most
scalable.
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XAD Enron, Yelp, Identifying the
(Explainable Amazon, Twitter ~ "Clever Hans"
Detection) Syhil, Elliptic effect: accuracy
[36], [40] based on noise rather
than causality.
Deep Transfer CWRU, IMS, Risk of negative
Learning PHM 2012 transfer if the
(DTL) [41] (Industrial Series)  domain gap is
excessive.
Graph DBLP, Systematization of
Anomaly Wikipedia, structural anomalies
Detection Reddit, Amazon, in nodes, edges and
(GAD) [40] Enron subgraphs.
GNN in lloT SWaT, WADI, Need to model
environments BATADAL, evolutionary

[11]

Xcos, epanetCPA

relational
interdependence in
cyber-physical

systems.
Knowledge- NSL-KDD, Semantic systems
based Systems ~ UNSW-NB15, offer greater
(KBS) [37] DS20S interpretability, but
face updating
challenges.
DL for Log HDFS, BGL, Challenge of

Detection [42]

Thunderbird,
Spirit, OpenStack

template instability
and massive volume
of unstructured data.

MTSAD ( CHB-MIT Granularity
Multivariate (EEG), Gas classification: point,
Series) [43] Pipeline, Yahoo interval, and full
Webscope series anomalies.
Encrypted CTU-13, CIC- Deep inspection
Network IDS-2017, infeasibility (DPI);
Traffic UNSW-NB15, dependence on
(SSL/TLS) MTA statistical flow
[44] characteristics.
AutoML in General The CASH problem:
Anomaly benchmarks of difficulty of

Detection [45]

Outlier Detection

automating selection
and adjustment
without fundamental
truth labels.

AD in Smart
Environments
[46]

Yahoo! S5, NAB,
UCR Archive,
Space Shuttle

Challenges of label
scarcity and
contextualization in
smart environments.

Microservices

KPIs, traces and

Root cause analysis

and RCA [47]  logs of "Sock (RCA) requires
Shop" correlation between
KPIs and service
logs.
Federated datasets from Balancing data
Machine networks and privacy and

Learning [48],
[49]

mobile devices

statistical efficiency
in decentralized
training.
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Federated CIFAR-10, Weight divergence
Learning for MNIST, in non-11D data
10T [48], [49] Imagenet (used as  reduces accuracy by
proxies) up to 55%.
Machine KDD Cup 99, Only 27% of the
Learning SLR  NSL-KDD, UCI,  registered studies
(General) [39]  Real- life datasets  use purely
unsupervised
methods.
Sensor Bot- loT, ODDS, Importance of
Systems ( NAB, Yahoo statistical and deep
Multi-pers.) Webscope, ELKI  hybridization for
[50] data streaming.
Multimedia LIVE Netflix, Modeling Quality of
Streaming ( CSIQ, LFOVIA, Experience ( QoE )
User-centric ) MCQoE, FCC using subjective and
[51] objective metrics.
AD for WCN GuifiSants The inclusion of
Network (Actual hardware metrics
Failures [34] Production), (CPU/RAM)
Linux Kernel increases the ability
features to detect network
faults.
LSTM in Amazon, Encoder-decoder
Technical Wireless Sensor architectures are
Systems [23], Network, superior for learning
[52] Electricity stationary and non-
consumption stationary time
relationships.
Time-Series SWAT, SMAP, Noise is the critical
DL ( WADI, SMD, factor that
Guidelines ) MSL complicates
detection in

industrial control
systems (CPS).

Source: own elaboration.
3.3. Real-time operational analysis

The third focus of this analysis is on the critical
transition of detection models from laboratory
environments to real production infrastructures,
where operational sustainability and time accuracy
are mandatory requirements.

In this context, the research of [9] is disruptive in
proposing the StreamWNNov algorithm, which
introduces a vital semantic distinction between the
concept of "novelty”, understood as an emerging
pattern that must be taught as a model, and that of
"anomaly"”, which is an exception that triggers
immediate alerts.

The results obtained on Spanish electricity demand
validate that this incremental learning approach
allows reducing the prediction error (MAPE) to
2.07% in continuous flows, while maintaining a
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computational complexity of O(1) in its online
phase [53]. This self-updating capability guarantees
the viability of real-time processing without
incurring the prohibitive costs of massive retraining,
a scalability factor that resonates with the warnings
of [53]. According to the trend analysis of the latter,
there is a critical gap in the current state of the art:
most intrusion detection models (IDS) for loT
networks are evaluated statically or offline, ignoring
that the massive attack surface and computational
load of Deep Learning can invalidate the immediate
response needed to "zero-day" threats at the network
edge.

Finally, the technical convergence between artificial
intelligence and real-time systems (RTS) is
examined by [54] , who emphasize that in safety-
critical domains, such as drones or industrial
robotics, adherence to worst-case execution time
(WCET) and strict time constraints are as vital as the
accuracy of the algorithms themselves. They
conclude that the design of high-impact systems
must be based on a systemic balance where the
sophistication of the architecture is harmonized with
the constraints of heterogeneous hardware and the
deterministic latency required by the monitored
physical environment.

3.4 Discussion of Trends and Results

Analysis of the reviewed studies reveals several
recurring patterns, although not all are equally
prevalent in every domain. The patterns that appear
most frequently in recent literature are discussed
below:

e Although multiple studies report better
performance of Deep Learning in large-scale,
multivariate scenarios, this dominance is not
absolute. Some work shows that, under data or
latency constraints, simpler approaches can
offer comparable results.

e Historical transition, from 2021 to 2025, where
a shift can be identified from proximity
methods (k-NN, SVM) focused on point
anomalies,  towards  dynamic  graph
architectures that model the interdependence of
sensors in 6G networks.

e Several authors agree that accuracy,
considered in isolation, is insufficient to
evaluate the actual performance of anomaly
detection systems. Current scientific validation
requires post-hoc techniques such as SHAP to
break down the contribution of each sensor,



ISSN: 1692-7257 - Volume 1 — Number 47 - 2026

transforming the "black box" into a diagnostic
tool.

e Isolation-based models ( Isolation Forest) offer
the greatest scalability, being the only viable
ones for real-time deployments on edge
devices with limited power.

e The results reported for algorithms such as
StreamWNNov suggest that the ability to
distinguish between “novelty” and “anomaly”
is a relevant aspect for the sustainability of
systems.

4. CONCLUSIONS

Anomaly detection has evolved from a peripheral
statistical task to a cornerstone of resilience in
hyperconnected  digital  ecosystems.  After
evaluating 50 recent articles, it is concluded that
there is no one-size-fits-all solution; the
effectiveness of a system depends on the balance
between the nature of the data, latency requirements,
and the need for transparency in decision-making.
While deep learning dominates in identifying
irregularities in complex multivariate flows,
classical and knowledge-based methods remain
undeniably relevant due to their computational
efficiency and native interpretability.

Several authors suggest that the incorporation of
explainability, federated learning, and autonomous
mechanisms could become a dominant line of
research in the coming years, especially in regulated
or distributed environments.

The ability to provide tangible reasoning behind
each alert not only increases user confidence but
also facilitates proactive prevention of systemic
failures. Finally, the integration of incremental
learning frameworks will allow Al to dynamically
adapt to a volatile world, transforming simple alerts
into actionable knowledge for the stability of critical
global infrastructure.
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