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Abstract: Outdated cadastral information in Colombia constitutes a structural barrier to the 

implementation of the Comprehensive Rural Reform (CRR). This research validates a 

methodology for the automatic extraction of visible boundaries through the fusion of 

synthetic aperture radar (SAR) and optical imagery, employing artificial intelligence 

techniques. Machine learning and deep learning approaches were comparatively evaluated, 

contrasting the foundational Segment Anything Model (SAM) with a retrained edge 

detector (VGG13_bn). Quantitative results indicate that, while SAM exhibits a higher level 

of segmentation, the VGG13_bn model achieved an F1-score of 0.405 and an accuracy of 

0.888, emerging as the most balanced and operationally viable alternative. This work 

provides a reproducible methodological workflow that can support cadastral modernization 

processes in territorially complex contexts. 

 

Keywords: multipurpose cadastre, edge detection, image fusion, deep learning, arcifinious 

boundaries. 

 

Resumen: La desactualización catastral en Colombia constituye una barrera estructural 

para la implementación de la Reforma Rural Integral (RRI). Esta investigación valida una 

metodología para la extracción automática de linderos visibles mediante la fusión de 

imágenes de radar de apertura sintética (SAR) y ópticas, empleando técnicas de inteligencia 

artificial. Se evaluaron comparativamente los enfoques de aprendizaje automático y 

aprendizaje profundo, contrastando el modelo fundacional Segment Anything Model 

(SAM) con un detector de bordes reentrenado (VGG13_bn). Los resultados cuantitativos 

indican que, si bien SAM presenta un mayor nivel de segmentación, el modelo VGG13_bn 

alcanzó un F1-score de 0.405 y una exactitud de 0.888, configurándose como la alternativa 

más equilibrada y viable desde el punto de vista operativo. El trabajo aporta un flujo 

metodológico reproducible que puede apoyar procesos de modernización catastral en 

contextos de alta complejidad territorial. 
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1. INTRODUCTION 

 

Legal insecurity in land tenure, aggravated by 

massive outdated cadastral records, represents a 

structural barrier for peace consolidation and the 

implementation of development policies such as the 

Comprehensive Rural Reform (CRR) in Colombia. 

Traditional land surveying methodologies, although 

precise, are logistically unfeasible for the scale and 

urgency the country demands, being time-intensive, 

resource-heavy, and susceptible to human error [1]. 

In this context, the automation of potential property 

boundary extraction using remote sensing has 

established itself as a research field of vital 

importance for cadastral modernization. 

 

The use of optical imagery, while effective, is 

severely restricted by persistent cloud cover in vast 

regions of the national territory. Therefore, 

Synthetic Aperture Radar (SAR) emerges as a 

strategic technology, thanks to its ability to acquire 

high-resolution images regardless of atmospheric or 

lighting conditions [2]. Despite this operational 

advantage, SAR images present significant 

technical challenges, primarily speckle noise a 

granular artifact inherent to the signal that degrades 

image quality and geometric distortions (e.g., 

layover, shadow) caused by the interaction of the 

radar beam with topographic relief [3]. The 

correction of these phenomena is an indispensable 

prerequisite for any reliable analysis. 

 

In the recent technical realm, the state of the art 

presents contrasting advances. On one hand, Fetai et 

al. [4] validated the superiority of deep 

convolutional networks for detecting visible 

boundaries, but their approach depends on 

Unmanned Aerial Vehicle (UAV) optical imagery, 

which is unfeasible for massive national coverage. 

On the other hand, in the radar domain, studies such 

as Carstairs et al. [5] document that, in short 

wavelength bands (such as X-Band), canopy 

penetration is limited and the signal suffers 

decorrelation in areas of complex topography; while 

this finding was in the context of forest degradation, 

it suggests inherent difficulties for defining property 

boundaries under vegetation. To mitigate these 

limitations, current literature suggests sensor fusion; 

Irfan et al. [6] recently demonstrated that 

multimodal fusion (SAR-Optical) significantly 

improves land use classification (Land Cover), 

leveraging radar texture and optical spectrality. In 

parallel, the emergence of Foundation Models such 

as the Segment Anything Model (SAM) [7] has 

opened new possibilities, although there is a 

technical gap regarding their operational viability 

compared to lightweight networks retrained for 

cadastral tasks in a country like Colombia. 

 

To overcome these challenges, this study proposes 

and validates an integral methodology that applies 

Artificial Intelligence (AI), specifically Deep 

Learning (DL) approaches [8], to automate the 

extraction of potential visible boundaries. The core 

of the methodology lies in the fusion of high-

resolution SAR imagery and optical data, 

combining the structural information of the radar 

with the spectral information of the optical image to 

create a fused product of greater visual 

interpretability. This approach not only addresses 

the technical problems of SAR but also lays a robust 

methodological foundation for future cadastral 

applications. 

 

For the development and validation of this proposal, 

the municipality of Vistahermosa (Meta) was 

selected as the study area. This territory, prioritized 

within the framework of the 2016 Peace Agreement, 

represents a microcosm of the country's cadastral 

challenges. A determining factor for its selection 

was the availability of a high-quality reference 

dataset corresponding to boundaries surveyed in the 

field using the Fit-For-Purpose (FFP) methodology 

in 2018, which was crucial for the quantitative 

validation of the developed AI models. This article 

details the complete workflow, from data 

preprocessing to the comparative analysis of the 

models, and concludes with a discussion on the 

practical viability of the solution in the Colombian 

context. 

 

2. METHODOLOGY 

 

The research followed a quantitative-experimental 

design; the workflow comprises data acquisition, 

preprocessing, image fusion, deep learning model 

training, and quantitative evaluation. 

 

2.1. Study Area and Data Inputs 

 

The study area focused on the Costa Rica and 

Termales rural districts (veredas) in the municipality 



ISSN: 1692-7257 - Volume 1 – Number 47 - 2026 
 

  

 
University of Pamplona 
       I. I. D. T. A.  

171 

of Vistahermosa (Meta), Colombia. This zone was 

strategically selected for two main reasons: (1) its 

relevance in the post-conflict context, being a 

prioritized territory for the implementation of the 

multipurpose cadastre, and (2) the availability of a 

high-quality validation dataset corresponding to 

boundaries surveyed in the field during the Fit-For-

Purpose (FFP) methodology pilot in 2018.  

 

The primary data used consisted of two types of 

satellite images acquired on close dates to ensure 

temporal consistency: 

 

● SAR Image: An image from the Capella Space 

constellation (X-band, 50 cm spatial resolution), 

acquired on September 24, 2023. Its very high 

resolution was key for discerning fine structural 

details. 

● Optical Image: A multispectral PlanetScope 

image (3 m spatial resolution), from September 

30, 2023, essential for land cover analysis and 

the creation of a fused product. 

 

2.2. Data Preprocessing and Fusion 

 

The methodological workflow began with rigorous 

preprocessing to mitigate artifacts inherent to SAR 

images and standardize the data for analysis. 

 

2.2.1 Speckle Noise Reduction 

 

To address the granular noise characteristic of SAR 

images, eight spatial filters were evaluated. The 

IDAN (Intensity-Driven Adaptive-Neighborhood) 

filter, implemented in the SNAP software, was 

selected because its adaptive neighborhood 

algorithm demonstrated the best balance between 

noise suppression and the preservation of edges and 

fine linear features, which are crucial for subsequent 

boundary detection [9]. 

 

2.2.2 Geometric Correction and Orthorectification 

 

Geometric distortions inherent to SAR, caused by 

relief, were corrected through the generation of a 

Digital Elevation Model (DEM). The 

radargrammetry technique was employed on the 

stereo pair of SAR images in the ENVI SARscape 

software to derive a high-resolution DEM. This 

DEM was subsequently used for the precise 

orthorectification of the SAR image, ensuring its 

correct geometric correspondence with the terrain 

and other coordinate systems [10]. 

 

2.2.3 SAR-Optical Synergism 

 

In order to maximize the extractable information, a 

fused data product was generated. A fusion based on 

the HSI color model (Hue, Saturation, Intensity) 

was applied, a technique that allows integrating the 

structural detail of a high-resolution image (SAR) 

with the chromatic information of a lower-

resolution multispectral image (optical). The 

Intensity (I) component of the optical image 

(transformed to HSI) was replaced by the SAR 

image, and the result was reconverted to RGB. This 

process, grounded in works such as those by Schmitt 

& Zhu [11], produces a hybrid image that 

significantly improves visual interpretability. 

 

 
                             (A)                                    (B) 
 

 
(C) 

Fig. 1. Synergistic data fusion. (A) PlanetScope optical image, 

(B) Capella Space SAR image, and (C) Resulting HSI fusion 

image. 
Source: Author's elaboration. 

 

2.3. Artificial Intelligence Models 

 

Two main AI paradigms were evaluated and 

compared for the generation of boundary 

candidates: 

 

2.3.1 Machine Learning (ML) 

 

The unsupervised clustering algorithm Segment 

Mean Shift was implemented using ArcGIS Pro 

segmentation tools. This method was chosen for its 

theoretical robustness in delineating irregular 

shapes without the need to predefine the number of 

clusters [12]. Although tests were conducted with 

this approach, the qualitative results showed land 

cover segmentation with overly thick and imprecise 

edges; thus, it was discarded for deep quantitative 

analysis in favor of DL methods. 

 

2.3.2 Deep Learning (DL):  

 

Two avant-garde approaches were explored: 

 



ISSN: 1692-7257 - Volume 1 – Number 47 - 2026 
 

  

 
University of Pamplona 
       I. I. D. T. A.  

172 

● Land Parcel Extraction (VGG13_bn): The 

problem was approached as a supervised 

edge detection task. A pre-trained BDCN 

(Bi-Directional Cascade Network) model 

[13] with a VGG13_bn backbone [14] was 

retrained. The training data were generated 

by creating a 0.5-meter buffer around the 

reference boundaries, converting he 

vectors into a binary mask. This value was 

selected as a compromise to ensure 

sufficient boundary representation at the 

pixel level without introducing noise from 

adjacent land covers; the total set (1573 

labels) was partitioned as follows: 70% 

training, 15% validation, and 15% testing. 

The visible boundary detection model was 

approached as an edge detection problem 

by retraining a pre-trained deep 

convolutional network, following the Deep 

Learning Edge Detection workflow 

implemented by ESRI. 

 

A Bi-Directional Cascade Network 

(BDCN) was employed as the base 

architecture for perceptual edge detection, 

using VGG13 with batch normalization 

(VGG13_bn) as the backbone. The 

architecture is composed of thirteen 

convolutional layers organized into five 

hierarchical blocks, each followed by batch 

normalization layers and ReLU activation 

functions. 

 

The hyperparameters employed were: 

 

o Loss Function: Binary Cross-

Entropy Loss (BDCE) 

o Optimizer: Adam 

o Learning Rate: 1 x 10-4 

o Batch Size: 8 

 

The process was executed on a portable 

computer with the following 

specifications: 

 

○ CPU: Core i7 13620H 2.4 GHz 

○ GPU: NVIDIA GeForce RTX 

4060 8 GB (VRAM) 

○ Memory: 24 GB (RAM) 

○ Framework: PyTorch (Integrated 

into ArcGIS Pro Deep Learning 

Framework) 

○ Software: ArcGIS Pro 3.4.0 / 

Arcpy 3.6 

 

● Segment Anything Model (SAM): Meta 

AI's foundation model was applied in its 

automatic mode. This model, thanks to its 

Transformer-based architecture and 

massive pre-training, performs zero-shot 

segmentation of all identifiable objects in 

the image, without requiring specific 

training for this project [7]. 

 

2.4. Results Evaluation 

 

The quality of the extracted potential boundaries 

was evaluated through a quantitative analysis of 

positional accuracy, commission, and omission. To 

do this, a tolerance buffer of 1.04 meters was 

generated around the reference boundaries (FFP), a 

threshold defined based on IGAC normative 

standards for cadastral cartography at the working 

scale [17]. The length of the extracted boundary 

candidates that fell within this buffer (True 

Positives) was quantified, as well as those that fell 

outside (False Positives or commission errors) and 

the reference boundaries that were not detected 

(False Negatives or omission errors). 

 

3. RESULTS AND DISCUSSION 

 

3.2. Evaluation Metrics 

 

To quantify model performance from a 

comprehensive perspective, two complementary 

metrics were employed. First, Accuracy was 

calculated, which measures the global proportion of 

model hits with respect to the total image pixels, 

indicating its general stability: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

Where: 

TP: True Positives. 

TN: True Negatives. 

FP: False Positives. 

FN: False Negatives. 

 

Additionally, the F1-Score was incorporated. Given 

that boundary detection implies a class imbalance 

(where potential boundaries occupy a minimal 

portion of the image compared to the background), 

this metric allows evaluating the specific balance 

between Precision (P) and Sensitivity (Recall - R) in 

delineating linear vectors: 

 

𝐹1 =  2 ⋅
(𝑃⋅ 𝑅)

𝑃 + 𝑅
       (2) 
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Where P is the predictive precision and R is the true 

positive rate (Recall). 

 

The joint interpretation of both values allows 

validating both the model's capacity to generalize 

the environment and its performance in the specific 

task of extracting potential boundaries. 

 

3.2. Comparison of AI Models 

 

The experimental phase was designed to 

systematically contrast Machine Learning (ML) and 

Deep Learning (DL) approaches. 

 

3.2.1 Performance and Discarding of the Machine 

Learning Approach 

 

Unsupervised ML algorithms, with Segment Mean 

Shift as their most robust representative, were 

evaluated on the synergistic product. As observed in 

Fig. 2, the result is a land cover segmentation in the 

form of a mosaic of irregular polygons. Although a 

differentiation of large land use masses is achieved, 

the generated edges are thick, geometrically 

imprecise, and present numerous discontinuities, 

making them unsuitable for extracting boundary 

vectors at a cadastral scale. The low quality of this 

output, added to the considerable computational 

effort required for its post-processing, justified 

discarding this paradigm and concentrating efforts 

on DL methods (42% contained within the 

Accuracy Buffer). 

 

 
Fig. 2. Potential Boundaries - Segment Mean Shift. 

Source: Author's elaboration. 
 

DL models produced qualitatively superior and 

conceptually distinct results. 

 

● Land Parcel Extraction (VGG13_bn) 

Approach - Synergism:  The VGG13_bn 

model (Land Parcel Extraction), trained for 

specific edge detection, reached its optimal 

performance after 10 training epochs, achieving 

an F1-Score of 0.405, an Accuracy of 0.888, and 

a validation loss (valid_loss) of 4.941e9. 

Although the F1-Score value may seem modest, 

it is a significant result in the context of the 

complex task of edge detection in SAR imagery. 

The qualitative evaluation (Fig. 3) is more 

revealing: the model produces thin linear vectors 

that correctly align with roads and parcel 

divisions, representing a direct output that is 

much more useful for cadastral purposes than 

that generated by ML methods (84% contained 

within the Accuracy Buffer). 

 
Fig. 3. Potential Boundaries - Land Parcel Extraction. 

Source: Author's elaboration. 
 

● Segment Anything Model (SAM) Approach: 

SAM produced more detailed and precise 

segmentation than all tested models; it not only 

delineated the main boundaries but also 

identified land cover variations within the same 

properties, demonstrating good contextual 

sensitivity (67% contained within the Accuracy 

Buffer). 

 

 
Fig. 4. Potential Boundaries - SAM.. 

Source: Author's elaboration. 
 

Its evaluation was conducted with respect to the 

reference information surveyed in the field; for this, 

a tolerance buffer of 1.04 m was generated around 

the boundaries obtained using the FFP 

methodology, in accordance with the positional 

accuracy established for cartographic inputs in 

IGAC Resolution 471 of 2020 [15], considering as 

true positives those extracted boundaries within the 

buffer and false positives those found outside. 

 

3.3. Discussion of Results and Implications 

 

3.3.1 The Dilemma between Theoretical Precision 

and Practical Viability 

 

Previous studies have demonstrated that the 

extraction of cadastral boundaries constitutes a 

highly challenging problem due to the linear and 

thin nature of the objects of interest, as well as the 

strong class imbalance Fetai et al. [16]; the 
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comparison between SAM and VGG13_bn exposes 

a central dilemma for the application of AI in 

institutional contexts. SAM, with its superior 

precision, establishes itself as the technical 

benchmark. However, its computational cost (more 

than 7 hours of processing on specialized hardware 

for the study area) makes it an academically 

valuable tool but operationally unfeasible for mass 

production. 

 

In contrast, the VGG13_bn model, although with a 

lower F1-Score, emerges as the pragmatic and 

scalable solution. Its capacity to run on conventional 

hardware in reasonable times and the possibility of 

adjusting its training to specific regional needs make 

it the most balanced and recommended approach for 

immediate implementation within the framework of 

the multipurpose cadastre. This finding highlights 

that, in applied engineering, the "best" solution is 

not always the most precise one, but the most 

efficient and sustainable one. 

 

Other studies on the subject, such as Zhang et al. 

[17], report precision results of 88%, recall of 75%, 

and an F1-score of 81% employing U-Net with a 

ResNet34 backbone for property boundary 

detection from satellite images; while these values 

are superior to those obtained in the present study, it 

is important to point out that said approach is based 

on a dense semantic segmentation scheme and on 

datasets with more homogeneous spectral 

conditions, which tends to favor higher global 

metrics. 

 

On the other hand, Fetai et al. [16] evaluated a 

convolutional model for reviewing visible cadastral 

boundaries, reporting F1-score values between 0.55 

and 0.60 and precisions of up to 0.71, depending on 

the geometric complexity and fragmentation of the 

analyzed parcels. These authors highlight that 

spatial variability and textural similarity between 

boundaries and adjacent land covers significantly 

influence model performance, which is consistent 

with the error patterns observed in this work. 

 

Similarly, in a study focused on UAV images, Fetai 

et al. [16] obtained a precision of 0.75, recall of 0.65, 

and F1-score of 0.70 using fully convolutional 

networks for visible boundary detection. Although 

these metrics surpass those achieved by the 

VGG13_bn model in the present case study, it must 

be considered that UAV images present 

significantly higher spatial resolutions and less radar 

noise interference, which facilitates the detection of 

continuous edges. 

In this context, the F1-score of 0.405 and the 

accuracy of 0.888 obtained in the present study fall 

within the range reported in the literature for 

boundary detection tasks in complex scenarios, 

especially when employing SAR imagery and SAR–

Optical fused products. These results reinforce the 

idea that, in operational cadastral applications, 

intermediate metrics can be considered acceptable 

when the objective is to generate candidates for 

physical boundaries to support field validation 

processes, rather than producing definitive legal 

delimitations. 

 

3.3.3 Limitations of the Methodology 

 

T A critical analysis of the VGG13_bn model 

results reveals systematic error patterns. Omission 

errors (false negatives) are concentrated in radar 

shadow areas and on boundaries defined by low 

vegetation whose texture is very similar to that of 

surrounding pastures. Commission errors (false 

positives) tend to appear in high-texture zones, such 

as dry riverbeds or drainage patterns, which the 

model confuses with linear structures. These 

findings suggest that future improvements should 

focus on incorporating additional information, such 

as polarimetric data or DEMs, to help the model 

disambiguate these complex situations. 

 

4. CONCLUSIONS 

 

This study developed and validated an integral 

methodology for the automatic extraction of visible 

boundaries through the fusion of SAR and optical 

imagery. The experimental results allow 

establishing three fundamental technical 

conclusions: 

 

First, the superiority of Deep Learning (DL) over 

traditional Machine Learning methods for this 

specific task was demonstrated. While algorithms 

such as Segment Mean Shift generated 

discontinuous segmentations, neural networks 

managed to abstract the linear geometry of the 

boundaries. Specifically, the VGG13_bn model 

consolidated itself as the most balanced solution, 

reaching an Accuracy of 0.888, which makes it 

operationally viable compared to foundation models 

like SAM, whose computational cost limits its 

scalability in resource-constrained environments. 

 

Second, the image fusion strategy proved decisive. 

It was verified that integrating the structural 

information of radar with the spectral richness of 

optics mitigates the individual deficiencies of each 

sensor. This complementarity allowed the model to 
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identify boundaries in conditions where passive 

optical sensors usually fail due to cloud cover, 

validating the use of SAR data as a critical input for 

the cadastre in tropical zones. 

 

The study identified important limitations and 

technical restrictions. It was observed that the radar 

X-Band presents limited penetration in areas of 

dense arboreal vegetation, generating interruptions 

in the continuity of detected edges. Likewise, 

commission errors (false positives) associated with 

dry drainage patterns that the model confuses with 

physical boundaries were reported. These 

limitations suggest that, for a productive 

implementation, the future integration of longer 

wavelength bands (such as L-Band) or LiDAR data 

is required. 

 

Finally, this work provides a replicable workflow 

that transitions from theory to a functional proof of 

concept. Although it does not replace legal field 

validation, the tool constitutes a technical input 

capable of optimizing land sweeping times, 

contributing technologically to the objectives of 

cadastral updating and formalization of rural 

property in Colombia. 

 

5. RECOMMENDATIONS 

 

Based on the findings, the following lines of work 

are proposed: 

 

o Perform a rigorous field validation in 

diverse Colombian ecosystems to quantify 

the positional accuracy of the VGG13_bn 

model and evaluate its generalization 

capacity. 

o Investigate the use of SAR data in longer 

wavelength bands (e.g., L-band), which 

offer better canopy penetration, to improve 

precision in areas of dense vegetation. 

o Integration with Legal Data: Develop 

hybrid workflows that utilize existing 

cadastral cartography as an input to guide 

or adjust AI models, seeking to close the 

gap between the physical and legal 

boundary. 
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ANEXOS 

 

Appendix A: detailed maps of potential 

boundary extraction 

 

Below are the maps generated for each of the 

evaluated methodologies. 

 

 
Fig. A.1. Map of reference boundaries surveyed in the field 

using the Fit-For-Purpose (FFP) methodology in 2018.. 

Source: Author's elaboration. 
 

 
Fig. A.2. Map of linear potential boundaries extracted with the 

Segment Mean Shift Machine Learning algorithm. 
Source: Author's elaboration. 

 

 
Fig. A.3. Map of linear potential boundaries extracted with the 

Land Parcel Extraction (VGG13_bn) Deep Learning model. 

Source: Author's elaboration. 
 

 
Fig. A.4. Map of linear potential boundaries extracted with the 

Segment Anything Model (SAM) Deep Learning model. 
Source: Author's elaboration. 


