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Resumen: La desactualización catastral en Colombia constituye una barrera estructural 

para la implementación de la Reforma Rural Integral (RRI). Esta investigación valida una 

metodología para la extracción automática de linderos visibles mediante la fusión de 

imágenes de radar de apertura sintética (SAR) y ópticas, empleando técnicas de inteligencia 

artificial. Se evaluaron comparativamente los enfoques de aprendizaje automático y 

aprendizaje profundo, contrastando el modelo fundacional Segment Anything Model 

(SAM) con un detector de bordes reentrenado (VGG13_bn). Los resultados cuantitativos 

indican que, si bien SAM presenta un mayor nivel de segmentación, el modelo VGG13_bn 

alcanzó un F1-score de 0.405 y una exactitud de 0.888, configurándose como la alternativa 

más equilibrada y viable desde el punto de vista operativo. El trabajo aporta un flujo 

metodológico reproducible que puede apoyar procesos de modernización catastral en 

contextos de alta complejidad territorial. 

 

Palabras clave: catastro multipropósito, detección de bordes, fusión de imágenes, 

aprendizaje profundo, límites arcifinios. 

 

Abstract: Outdated cadastral information in Colombia constitutes a structural barrier to the 

implementation of the Comprehensive Rural Reform (CRR). This research validates a 

methodology for the automatic extraction of visible boundaries through the fusion of 

synthetic aperture radar (SAR) and optical imagery, employing artificial intelligence 

techniques. Machine learning and deep learning approaches were comparatively evaluated, 

contrasting the foundational Segment Anything Model (SAM) with a retrained edge 

detector (VGG13_bn). Quantitative results indicate that, while SAM exhibits a higher level 

of segmentation, the VGG13_bn model achieved an F1-score of 0.405 and an accuracy of 

0.888, emerging as the most balanced and operationally viable alternative. This work 
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provides a reproducible methodological workflow that can support cadastral modernization 

processes in territorially complex contexts. 

 

Keywords: multipurpose cadastre, edge detection, image fusion, deep learning, arcifinious 

boundaries. 

 

 

1. INTRODUCCIÓN 

 

La inseguridad jurídica en la tenencia de la tierra, 

agravada por una masiva desactualización catastral, 

representa una barrera estructural para la 

consolidación de la paz y la implementación de 

políticas de desarrollo como la Reforma Rural 

Integral (RRI) en Colombia. Las metodologías 

tradicionales de levantamiento predial, aunque 

precisas, son logísticamente inviables para la escala 

y urgencia que demanda el país, siendo intensivas 

en tiempo, recursos y susceptibles al error humano 

[1]. En este contexto, la automatización de la 

extracción de potenciales linderos prediales 

mediante teledetección se ha consolidado como un 

campo de investigación de vital importancia para la 

modernización del catastro. 

 

El uso de imágenes ópticas, aunque efectivo, se ve 

severamente restringido por la persistente cobertura 

nubosa en vastas regiones del territorio nacional. 

Por ello, el Radar de Apertura Sintética (SAR) 

emerge como una tecnología estratégica, gracias a 

su capacidad de adquirir imágenes de alta resolución 

independientemente de las condiciones atmosféricas 

o de iluminación [2]. A pesar de esta ventaja 

operativa, las imágenes SAR presentan desafíos 

técnicos significativos, principalmente el ruido 

speckle, un artefacto granular inherente a la señal 

que degrada la calidad de la imagen, y las 

distorsiones geométricas (ej. layover, shadow) 

causadas por la interacción del haz del radar con el 

relieve topográfico [3]. La corrección de estos 

fenómenos es un prerrequisito indispensable para 

cualquier análisis fiable. 

 

En el ámbito técnico reciente, el estado del arte 

presenta avances contrastantes. Por un lado, Fetai et 

al. [4] validaron la superioridad de las redes 

convolucionales profundas para la detección de 

linderos visibles, pero su enfoque depende de 

imágenes ópticas de vehículos aéreos (UAV), 

inviables para coberturas nacionales masivas. Por 

otro lado, en el dominio del radar, estudios como el 

de Carstairs et al. [5] documentan que, en bandas de 

longitud de onda corta (como la Banda X), la 

penetración en el dosel es limitada y la señal sufre 

decorrelación en zonas de topografía compleja; si 

bien este hallazgo se dio en el contexto de 

degradación forestal, sugiere dificultades inherentes 

para la definición de bordes prediales bajo 

vegetación. Para mitigar estas limitaciones, la 

literatura más actual sugiere la fusión de sensores; 

Irfan et al. [6] demostraron recientemente que la 

fusión multimodal (SAR-Óptico) mejora 

significativamente la clasificación de uso del suelo 

(Land Cover), aprovechando la textura del radar y la 

espectralidad óptica. Paralelamente, la irrupción de 

Modelos Fundacionales como el Segment Anything 

Model (SAM) [7] ha abierto nuevas posibilidades, 

aunque existe un vacío técnico respecto a su 

viabilidad operativa frente a redes ligeras re-

entrenadas para tareas catastrales en un país como 

Colombia. 

 

Para superar estos desafíos, este estudio propone y 

valida una metodología integral que aplica 

Inteligencia Artificial (IA), específicamente 

enfoques de Aprendizaje Profundo (DL) [8], para 

automatizar la extracción de potenciales linderos 

visibles. El núcleo de la metodología reside en la 

fusión de imágenes SAR de alta resolución y datos 

ópticos, combinando la información estructural del 

radar con la información espectral de la imagen 

óptica para crear un producto fusionado de mayor 

interpretabilidad. Este enfoque no solo aborda los 

problemas técnicos del SAR, sino que sienta una 

base metodológica robusta para futuras aplicaciones 

catastrales. 

 

Para el desarrollo y validación de esta propuesta, se 

seleccionó el municipio de Vistahermosa (Meta) 

como área de estudio. Este territorio, priorizado en 

el marco del Acuerdo de Paz de 2016, representa un 

microcosmos de los desafíos catastrales del país. Un 

factor determinante para su elección fue la 

disponibilidad de un conjunto de datos de referencia 

de alta calidad, correspondientes a los linderos 

levantados en campo mediante la metodología Fit-

For-Purpose (FFP) en 2018, lo cual fue crucial para 

la validación cuantitativa de los modelos de IA 

desarrollados. Este artículo detalla el flujo de trabajo 

completo, desde el preprocesamiento de datos hasta 

el análisis comparativo de los modelos, y concluye 

con una discusión sobre la viabilidad práctica de la 

solución en el contexto colombiano. 
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2. METODOLOGÍA 

 

La investigación siguió un diseño cuantitativo-

experimental, el flujo de trabajo comprende 

adquisición de datos, preprocesamiento, fusión de 

imágenes, entrenamiento de modelos de aprendizaje 

profundo y evaluación cuantitativa. 

 

2.1. Área de Estudio e Insumos de Datos 

 

El área de estudio se focalizó en las veredas Costa 

Rica, y Termales, en el municipio de Vistahermosa 

(Meta), Colombia. Esta zona fue seleccionada 

estratégicamente por dos razones principales: (1) su 

relevancia en el contexto del posconflicto, siendo un 

territorio priorizado para la implementación del 

catastro multipropósito, y (2) la disponibilidad de un 

conjunto de datos de validación de alta calidad, 

correspondientes a los linderos levantados en campo 

durante el piloto de la metodología Fit-For-Purpose 

(FFP) en 2018. 

 

Los datos primarios utilizados fueron dos tipos de 

imágenes satelitales adquiridas en fechas cercanas 

para asegurar la consistencia temporal: 

 

● Imagen SAR: Una imagen de la 

constelación Capella Space (Banda X, 50 

cm de resolución espacial), adquirida el 24 

de septiembre de 2023. Su muy alta 

resolución fue clave para el discernimiento 

de detalles estructurales finos. 

● Imagen Óptica: Una imagen multiespectral 

de PlanetScope (3 m de resolución 

espacial), del 30 de septiembre de 2023, 

esencial para el análisis de coberturas y la 

creación de un producto fusionado. 

 

2.2. Preprocesamiento y Fusión de Datos 

 

El flujo metodológico inició con un 

preprocesamiento riguroso para mitigar los 

artefactos inherentes a las imágenes SAR y 

estandarizar los datos para el análisis. 

 

2.2.1 Reducción del Ruido Speckle 

 

Para abordar el ruido granular característico de las 

imágenes SAR, se evaluaron ocho filtros espaciales. 

Se seleccionó el filtro IDAN (Intensity-Driven 

Adaptive-Neighborhood), implementado en el 

software SNAP, debido a que su algoritmo de 

vecindad adaptativa demostró el mejor equilibrio 

entre la supresión de ruido y la preservación de 

bordes y características lineales finas, cruciales para 

la posterior detección de linderos [9]. 

2.2.2 Corrección Geométrica y Orto-rectificación 

 

Las distorsiones geométricas inherentes al SAR, 

causadas por el relieve, fueron corregidas mediante 

la generación de un Modelo Digital de Elevación 

(DEM). Se empleó la técnica de radargrametría 

sobre el par estéreo de imágenes SAR en el software 

ENVI SARscape para derivar un DEM de alta 

resolución. Este DEM fue posteriormente utilizado 

para la ortorrectificación precisa de la imagen SAR, 

asegurando su correcta correspondencia geométrica 

con el terreno y otros sistemas de coordenadas [10]. 

 

2.2.3 Fusión de imágenes SAR-Óptico 

 

Con el fin de maximizar la información extraíble, se 

generó un producto de datos fusionados. Se aplicó 

una fusión basada en el modelo de color HSI (Tono, 

Saturación, Intensidad), una técnica que permite 

integrar el detalle estructural de una imagen de alta 

resolución (SAR) con la información cromática de 

una imagen multiespectral de menor resolución 

(óptica). El componente de Intensidad (I) de la 

imagen óptica (transformada a HSI) fue 

reemplazado por la imagen SAR, y el resultado fue 

reconvertido a RGB. Este proceso, fundamentado en 

trabajos como los de Schmitt & Zhu [11], produce 

una imagen híbrida que mejora significativamente la 

interpretabilidad visual. 

 

 
                             (A)                                    (B) 

 

 
(C) 

Fig. 1. Fusión sinérgica  de datos. (A) Imagen óptica 
PlanetScope, (B) Imagen SAR Capella Space, y (C) Imagen 

resultante de la fusión HSI. 

Fuente: Elaboración propia. 
 

2.3. Modelos de inteligencia artificial 

 

Se evaluaron y compararon dos paradigmas 

principales de IA para la generación de candidatos a 

linderos: 
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2.3.1 Aprendizaje Automático (ML) 

 

Se implementó el algoritmo de clustering no 

supervisado Segment Mean Shift a través de las 

herramientas de segmentación de ArcGIS Pro. Este 

método fue elegido por su robustez teórica para 

delinear formas irregulares sin necesidad de 

predefinir el número de clústeres [12]. Aunque se 

realizaron pruebas con este enfoque, los resultados 

cualitativos mostraron una segmentación de 

coberturas con bordes demasiado gruesos e 

imprecisos, por lo que se descartó para un análisis 

cuantitativo profundo en favor de los métodos de 

DL. 

 

2.3.2 Aprendizaje Profundo (DL) 

 

Se exploraron dos enfoques de vanguardia: 

 

● Land Parcel Extraction (VGG13_bn): Se abordó 

el problema como una tarea de detección de 

bordes supervisada. Se re-entrenó un modelo 

pre-entrenado BDCN (Bi-Directional Cascade 

Network) [13] con un backbone VGG13_bn 

[14]. Los datos de entrenamiento se generaron 

creando un buffer de 0.5 metros alrededor de los 

linderos de referencia, convirtiendo los vectores 

en una máscara binaria. Este valor fue 

seleccionado como un compromiso para 

asegurar una representación suficiente del borde 

a nivel de píxel sin introducir ruido de las 

coberturas adyacentes, el conjunto total (1573 

etiquetas) se particionó de la siguiente manera: 

70% entrenamiento, 15% validación y 15% 

prueba. 

 

El modelo de detección de linderos visibles se 

abordo como un problema de detección de 

bordes mediante el reentrenamiento de una red 

convolucional profunda pre entrenada, 

siguiendo el flujo de trabajo de Deep Learning 

Edge Detection implementado por ESRI. 

 

Se empleó una Bi-Directional Cascade Network 

(BDCN) como arquitectura base para detección 

perceptual de bordes, utilizando VGG13 con 

normalización por lotes (VGG13_bn) como 

backbone, la arquitectura está compuesta por 

trece capas convolucionales organizadas en 

cinco bloques jerárquicos, cada uno seguido de 

capas de normalización por lotes y funciones de 

activación ReLU. 

 

Los hiperparámetros empleados fueron: 

 

▪ Función de pérdida: Binary Cross-Entropy 

Loss (BDCE) 

▪ Optimizador: Adam 

▪ Tasa de Aprendizaje: 1 x 10-4 

▪ Tamaño del lote: 8  

 

Y fue ejecutado dentro de un equipo portátil con 

las siguientes características: 

 

▪ CPU: Core i7 13620H 2,4 GHz 

▪ GPU: NVIDIA GeForce RTX 4060 8 Gb 

(VRAM) 

▪ Memoria: 24 GB (RAM) 

▪ Framework: PyTorch (Integrado en ArcGIS 

Pro Deep Learning Framework)  

▪ Software: ArcGIS Pro 3.4.0 / Arcpy 3.6 

 

● Segment Anything Model (SAM): Se aplicó el 

modelo fundacional de Meta AI en su modo 

automático. Este modelo, gracias a su 

arquitectura basada en Transformers y su pre-

entrenamiento masivo, realiza una segmentación 

de tipo zero-shot de todos los objetos 

identificables en la imagen, sin requerir 

entrenamiento específico para este proyecto [7]. 

 

2.4. Evaluación de Resultados 

 

La calidad de los linderos potenciales extraídos se 

evaluó mediante un análisis cuantitativo de 

exactitud posicional, comisión y omisión. Para ello, 

se generó un buffer de tolerancia de 1.04 metros 

alrededor de los linderos de referencia (FFP), un 

umbral definido con base en los estándares 

normativos del IGAC para cartografía catastral a la 

escala de trabajo [17]. Se cuantificó la longitud de 

los candidatos a linderos extraídos que cayeron 

dentro de este buffer (Verdaderos Positivos), así 

como aquellos que quedaron fuera (Falsos Positivos 

o errores de comisión) y los linderos de referencia 

que no fueron detectados (Falsos Negativos o 

errores de omisión). 

 

3. RESULTADOS Y DISCUSIÓN 

 

3.1. Métricas de Evaluación 

 

Para cuantificar el desempeño de los modelos desde 

una perspectiva integral, se emplearon dos métricas 

complementarias. En primera instancia, se calculó la 

Exactitud (Accuracy), la cual mide la proporción 

global de aciertos del modelo respecto al total de 

píxeles de la imagen, indicando su estabilidad 

general: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

Donde:  

TP: Verdaderos Positivos. 

TN: Verdaderos Negativos. 

FP: Falsos Positivos. 

FN: Falsos Negativos. 

 

Adicionalmente, se incorporó el F1-Score. Dado 

que la detección de linderos implica un desbalance 

de clases (donde los posibles linderos ocupan una 

porción mínima de la imagen frente al fondo), esta 

métrica permite evaluar el equilibrio específico 

entre la Precisión (P) y la Sensibilidad (R) en la 

delimitación de los vectores lineales: 

 

𝐹1 =  2 ⋅
(𝑃⋅ 𝑅)

𝑃 + 𝑅
       (2) 

 

Donde P es la precisión predictiva y R es la tasa de 

verdaderos positivos (Recall). 

 

La interpretación conjunta de ambos valores permite 

validar tanto la capacidad del modelo para 

generalizar el entorno como su desempeño en la 

tarea específica de extracción de potenciales 

linderos. 

 

3.2. Comparación de Modelos de IA 

 

La fase experimental se diseñó para contrastar de 

manera sistemática los enfoques de Aprendizaje 

Automático (ML) y Aprendizaje Profundo (DL). 

 

3.2.1 Desempeño y descarte del enfoque de machine 

learning 

 

Los algoritmos de ML no supervisado, con Segment 

Mean Shift como su representante más robusto, 

fueron evaluados sobre el sinergismo. Como se 

observa en la Fig. 2, el resultado es una 

segmentación de coberturas en forma de un mosaico 

de polígonos irregulares. Aunque se logra una 

diferenciación de las grandes masas de uso del 

suelo, los bordes generados son gruesos, 

geométricamente imprecisos y presentan numerosas 

discontinuidades, lo que los hace inadecuados para 

la extracción de vectores de linderos a una escala 

catastral. La baja calidad de esta salida, sumada al 

considerable esfuerzo computacional que requeriría 

su posprocesamiento, justificó el descarte de este 

paradigma y la concentración de los esfuerzos en los 

métodos de DL (42% contenido dentro del Buffer de 

exactitud) 

 

 
Fig. 2. Potenciales Linderos Segment Mean Shift. 

Fuente: Elaboración propia. 
 

Los modelos de DL produjeron resultados 

cualitativamente superiores y conceptualmente 

distintos. 

 

● Enfoque Land Parcel Extraction 

(VGG13_bn) - Sinergismo:  El modelo 

VGG13_bn (Land Parcel Extraction), entrenado 

para la detección específica de bordes, alcanzó 

su rendimiento óptimo tras 10 épocas de 

entrenamiento, logrando un F1-Score de 0.405, 

una Accuracy de 0.888 y una pérdida de 

validación (valid_loss) de 4.941e9. Aunque el 

valor del F1-Score puede parecer modesto, es un 

resultado significativo en el contexto de la 

compleja tarea de detección de bordes en 

imágenes SAR. La evaluación cualitativa (Fig. 

3) es más reveladora: el modelo produce 

vectores lineales delgados que se alinean 

correctamente con caminos y divisiones de 

parcelas, representando una salida directa y 

mucho más útil para el propósito catastral que la 

generada por los métodos de ML (84% 

contenido dentro del Buffer de exactitud) 

 

 
Fig. 3. Potenciales Linderos Land Parcel Extraction. 

Fuente: Elaboración propia. 
 

● Enfoque Segment Anything Model (SAM): 

SAM produjo segmentación más detallada y 

precisa de todos los modelos probados, no solo 

delineo los linderos principales, sino que 

también identificó variaciones de cobertura 

dentro de los mismos predios, demostrando una 

sensibilidad contextual buena (67% contenido 

dentro del Buffer de exactitud) 
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Fig. 4. Potenciales  Linderos SAM. 

Fuente: Elaboración propia. 

 

Su evaluación se dio respecto a la información de 

referencia levantada en campo, para esto se generó 

un buffer de tolerancia de 1,04 m alrededor de los 

linderos obtenidos mediante la metodología FFP, de 

acuerdo con la exactitud posicional establecida para 

el insumo cartográfico en la Resolución IGAC 471 

de 2020 [15], considerándose como verdaderos 

positivos aquellos linderos extraídos dentro del 

buffer y falsos positivos aquellos se encuentran 

fuera. 

 

3.3. Discusión de Resultados e Implicaciones 

 

3.3.1 El Dilema entre la Precisión Teórica y la 

Viabilidad Práctica 

 

Estudios previos han demostrado que la extracción 

de límites catastrales constituye un problema 

altamente desafiante debido al carácter lineal y 

delgado de los objetos de interés, así como al fuerte 

desbalance entre clases Fetai et al [16]; la 

comparación entre SAM y VGG13_bn expone un 

dilema central para la aplicación de la IA en 

contextos institucionales. SAM, con su precisión 

superior, se establece como el benchmark técnico. 

Sin embargo, su costo computacional (más de 7 

horas de procesamiento en hardware especializado 

para el área de estudio) lo convierte en una 

herramienta académicamente valiosa pero 

operativamente inviable para la producción masiva. 

 

En contraste, el modelo VGG13_bn, aunque con un 

F1-Score inferior, emerge como la solución 

pragmática y escalable. Su capacidad para 

ejecutarse en hardware convencional en tiempos 

razonables y la posibilidad de ajustar su 

entrenamiento a necesidades regionales específicas 

lo convierten en el enfoque más equilibrado y 

recomendable para una implementación inmediata 

en el marco del catastro multipropósito. Este 

hallazgo subraya que, en la ingeniería aplicada, la 

"mejor" solución no es siempre la más precisa, sino 

la más eficiente y sostenible. 

 

Otros estudios de la temática como el de Zhang et 

al. [17] reportan resultados de precisión del 88%, 

recall del 75% y F1-score del 81% empleando U-

Net con backbone ResNet34 para la detección de 

límites prediales a partir de imágenes Satelitales; si 

bien estos valores son superiores a los obtenidos en 

el presente estudio, es importante señalar que dicho 

enfoque se basa en un esquema de segmentación 

semántica densa y en conjunto de datos con 

condiciones espectrales más homogéneas, lo que 

tiene a favorecer métricas globales más altas. 
 

Por su parte, Fetai et al. [16] evaluaron un modelo 

convolucional para la revisión de límites catastrales 
visibles, reportando valores de F1-score entre 0.55 

y 0.60 y precisiones de hasta 0.71, dependiendo de 

la complejidad geométrica y fragmentación de las 

parcelas analizadas. Estos autores destacan que la 

variabilidad espacial y la similitud textural entre 

linderos y coberturas adyacentes influyen 

significativamente en el desempeño de los modelos, 

lo cual es consistente con los patrones de error 

observados en este trabajo.  

 

De manera similar, en un estudio enfocado en 

imágenes UAV, Fetai et al. [16] obtuvieron 

precision de 0.75, recall de 0.65 y F1-score de 0.70 

utilizando redes totalmente convolucionales para la 

detección de linderos visibles. Aunque estas 

métricas superan las alcanzadas por el modelo 

VGG13_bn en el presente caso de estudio, debe 

considerarse que las imágenes UAV presentan 

resoluciones espaciales significativamente más altas 

y menor interferencia de ruido radar, lo que facilita 

la detección de bordes continuos. 

 

En este contexto, el F1-score de 0.405 y la exactitud 

de 0.888 obtenidos en el presente estudio se sitúan 

dentro del rango reportado en la literatura para 

tareas de detección de linderos en escenarios 

complejos, especialmente cuando se emplean 

imágenes SAR y productos fusionados SAR–óptico. 

Estos resultados refuerzan la idea de que, en 

aplicaciones catastrales operativas, métricas 

intermedias pueden considerarse aceptables cuando 

el objetivo es generar candidatos a linderos físicos 

que apoyen procesos de validación en campo, más 

que producir delimitaciones jurídicas definitivas. 

 

3.3.2 Limitaciones de la Metodología:  

 

Un análisis crítico de los resultados del modelo 

VGG13_bn revela patrones de error sistemáticos. 

Los errores de omisión (falsos negativos) se 

concentran en áreas de sombra de radar y sobre 

linderos definidos por vegetación baja cuya textura 

es muy similar a la de los pastos circundantes. Los 

errores de comisión (falsos positivos) tienden a 
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aparecer en zonas de alta textura, como lechos de 

ríos secos o patrones de drenaje, que el modelo 

confunde con estructuras lineales. Estos hallazgos 

sugieren que futuras mejoras deberían enfocarse en 

incorporar información adicional, como datos 

polarimétricos o de DEM, para ayudar al modelo a 

desambiguar estas situaciones complejas. 

 

4. CONCLUSIONES 

 

Este estudio desarrolló y validó una metodología 

integral para la extracción automática de linderos 

visibles mediante la fusión de imágenes SAR y 

ópticas. Los resultados experimentales permiten 

establecer tres conclusiones técnicas fundamentales: 

Primero, se demostró la superioridad del 

Aprendizaje Profundo (DL) sobre los métodos de 

Machine Learning tradicionales para esta tarea 

específica. Mientras que algoritmos como Segment 

Mean Shift generaron segmentaciones discontinuas, 

las redes neuronales lograron abstraer la geometría 

lineal de los linderos. Específicamente, el modelo 

VGG13_bn se consolidó como la solución más 

equilibrada, alcanzando una Exactitud (Accuracy) 

de 0.888, lo que lo hace viable operativamente 

frente a modelos fundacionales como SAM, cuyo 

costo computacional limita su escalabilidad en 

entornos de recursos restringidos. 

 

Segundo, la estrategia de fusión de imágenes resultó 

determinante. Se comprobó que la integración de la 

información estructural del radar con la riqueza 

espectral óptica mitiga las deficiencias individuales 

de cada sensor. Esta complementariedad permitió al 

modelo identificar linderos en condiciones donde 

los sensores ópticos pasivos suelen fallar debido a la 

nubosidad, validando el uso de datos SAR como un 

insumo crítico para el catastro en zonas tropicales. 

 

El estudio identificó limitaciones y restricciones 

técnicas importantes. Se observó que la Banda X del 

radar presenta una penetración limitada en zonas de 

vegetación arbórea densa, lo que genera 

interrupciones en la continuidad de los bordes 

detectados. Asimismo, se reportaron errores de 

comisión (falsos positivos) asociados a patrones de 

drenaje seco que el modelo confunde con linderos 

físicos. Estas limitaciones sugieren que, para una 

implementación productiva, se requiere la 

integración futura de bandas de mayor longitud de 

onda (como la Banda L) o datos LiDAR. 

 

Finalmente, este trabajo aporta un flujo de trabajo 

replicable que transita desde la teoría hacia una 

prueba de concepto funcional. Si bien no reemplaza 

la validación jurídica en campo, la herramienta 

constituye un insumo técnico capaz de optimizar los 

tiempos de barrido predial, contribuyendo 

tecnológicamente a los objetivos de actualización 

catastral y formalización de la propiedad rural en 

Colombia. 

 

5. RECOMENDACIONES 

 

A partir de los hallazgos, se proponen las siguientes 

líneas de trabajo: 

 

● Realizar una validación de campo rigurosa en 

diversos ecosistemas colombianos para 

cuantificar la exactitud posicional del modelo 

VGG13_bn y evaluar su capacidad de 

generalización. 

● Investigar el uso de datos SAR en bandas de 

mayor longitud de onda (ej. banda L), que 

ofrecen una mejor penetración del dosel arbóreo, 

para mejorar la precisión en áreas de vegetación 

densa. 

● Integración con Datos Jurídicos: Desarrollar 

flujos de trabajo híbridos que utilicen la 

cartografía catastral existente como una entrada 

para guiar o ajustar los modelos de IA, buscando 

cerrar la brecha entre el lindero físico y el 

jurídico. 
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ANEXOS 

 

Apéndice A: mapas detallados de la extracción 

de potenciales linderos 

 

A continuación, se presentan los mapas generados 

para cada una de las metodologías evaluadas. 

 

 
Fig. A.1. Mapa de los linderos de referencia levantados en 

campo mediante la metodología Fit-For-Purpose (FFP) en el 
año 2018. Fuente: Elaboración propia. 

 

 
Fig. A.2. Mapa de los potenciales linderos lineales extraídos 
con el algoritmo de Aprendizaje Automático Segment Mean 

Shift .Fuente: Elaboración propia. 

 

 
Fig. A.3. Mapa de los potenciales linderos lineales extraídos 

con el modelo de Aprendizaje Profundo Land Parcel Extraction 
(VGG13_bn). Fuente: Elaboración propia. 

 

 
Fig. A.4. Mapa de los potenciales linderos lineales extraídos 

con el modelo de Aprendizaje Profundo Segment Anything 

Model (SAM). Fuente: Elaboración propia. 


