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Resumen: En este trabajo se compararon tres técnicas de inteligencia artificial para la
deteccion binaria (sano/enfermo) de cardiopatias mediante cortes axiales de resonancia
magnética cardiaca. Usando un conjunto de 150 pacientes en formato NIfTI, las imagenes
se preprocesaron (normalizacion, reescalado a 128 x 128, conversién a RGB y aumento de
datos) y se dividieron en una proporcion 80/20 por paciente. Se evaluaron Random Forest
con descriptores radiomicos GLCM vy estadisticos de primer orden, una red neuronal
convolucional (CNN) y un modelo basado en YOLOV8 adaptado a clasificacion binaria.
Los modelos se compararon mediante accuracy, precision, recall, F1-score y AUC, y se
aplicaron técnicas de explicabilidad (SHAP, Grad-CAM, Integrated Gradients y
sensibilidad a la oclusion) para validar la coherencia anatémica de las predicciones. En
conjunto, los resultados indican que los enfoques de aprendizaje profundo preentrenado,
como YOLOVS, ofrecen ventajas sustanciales en términos de precisién e interpretabilidad,
posicionandose como una alternativa prometedora para el desarrollo de sistemas
inteligentes de apoyo al diagndstico de cardiopatias estructurales.

Palabras clave: cardiopatias, resonancia magnética cardiaca, YOLOv8, Random Forest,
CNN, inteligencia artificial.

Abstract: In this study, three artificial intelligence techniques were compared for the binary
detection (healthy/diseased) of cardiopathies using axial slices from cardiac magnetic
resonance imaging. Using a dataset of 150 patients in NIfTI format, the images were
preprocessed (normalization, rescaling to 128 x 128, RGB conversion, and data
augmentation) and split on a per-patient basis using an 80/20 ratio. A Random Forest model
with GLCM radiomic descriptors and first-order statistical features, a convolutional neural
network (CNN), and a YOLOv8-based model adapted for binary classification were
evaluated. The models were compared using accuracy, precision, recall, F1-score, and
AUC, and explainability techniques (SHAP, Grad-CAM, Integrated Gradients, and
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occlusion sensitivity) were applied to validate the anatomical coherence of the predictions.
Overall, the results indicate that pretrained deep learning approaches, such as YOLOVS,
offer substantial advantages in terms of accuracy and interpretability, positioning them as
a promising alternative for the development of intelligent decision-support systems for the

diagnosis of structural cardiopathies.

Keywords: heart disease, MRI, YOLOv8, Random Forest, CNN, artificial intelligence.

1. INTRODUCCION

Las enfermedades cardiovasculares siguen siendo la
principal causa de muerte en el mundo,
representando aproximadamente el 32% de todas las
defunciones globales cada afio, segin la
Organizacién Mundial de la Salud (OMS) [1]. Se
estima que mas de 17.9 millones de personas
fallecen anualmente por causas relacionadas con el
corazon y los vasos sanguineos, una cifra que
continda en ascenso debido al envejecimiento
poblacional, los cambios en los estilos de vida y la
limitada cobertura de estrategias preventivas. La
OMS ha enfatizado la necesidad de intervenciones
tempranas, especialmente en paises de ingresos
medios y bajos, donde la carga de enfermedad
cardiovascular ha mostrado una tendencia alarmante
al alza.

En Colombia, esta situacion no es ajena. El
Ministerio de Salud y Proteccion Social ha
reportado que, durante los dltimos afios, las
enfermedades del sistema circulatorio han ocupado
consistentemente los primeros lugares como causa
de muerte en el pais, siendo la enfermedad
isquémica  del  corazén, los  accidentes
cerebrovasculares y las enfermedades hipertensivas
las mas prevalentes [2]. En 2022, se estimd una tasa
de mortalidad por enfermedades cardiovasculares
cercana a 176 muertes por cada 100 000 habitantes,
con una carga mayor en adultos mayores y zonas
rurales [3]. A pesar de avances en infraestructura
hospitalaria 'y cobertura, persisten desafios
estructurales relacionados con el acceso equitativo
al diagnostico oportuno, especialmente en regiones
con escasa cobertura especializada. En este
escenario, la adopcion de tecnologias capaces de
facilitar la deteccion temprana y eficiente de
enfermedades cardiovasculares, como soluciones
basadas en inteligencia artificial, se perfila como
una prioridad de salud publica [4].

Frente a este panorama, la deteccién precoz y
precisa de condiciones cardiacas, incluso antes de
que se manifiesten clinicamente, se ha convertido en
un objetivo clave de la medicina moderna. Entre las
herramientas diagndsticas disponibles, la resonancia
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magneética cardiaca (IRM) destaca por su capacidad
para ofrecer imagenes detalladas de la morfologia y
funcién del corazén, sin exposicidon a radiacién
ionizante [5], [6]. Sin embargo, el andlisis
tradicional de estas imagenes depende de la
interpretacion visual por parte de expertos, una
practica sujeta a variabilidad inter observador,
demandante en tiempo y no siempre accesible en
todos los entornos clinicos [7].

En este contexto, la inteligencia artificial (IA) ha
emergido como una solucién prometedora para
automatizar procesos diagndsticos, reducir la carga
clinica y mejorar la consistencia del andlisis [8]. Se
han desarrollado multiples modelos basados en
aprendizaje profundo que permiten segmentar
cavidades cardiacas, cuantificar volumenes o
clasificar patologias especificas a partir de iméagenes
médicas [9], [10]. Sin embargo, en la préctica clinica
diaria, muchas decisiones iniciales se reducen a una
pregunta fundamental: ¢existe 0 no una condicién
cardiaca que amerite atencion?

Abordar esta pregunta desde un enfoque binario
presencia 0 ausencia de enfermedad resulta
especialmente relevante en escenarios como cribado
poblacional, triaje en urgencias o telemedicina [11],
[12]. En tales contextos, modelos ligeros,
interpretables y eficientes, capaces de ofrecer
respuestas confiables a partir de imagenes basicas,
podrian ser determinantes para reducir tiempos
diagnosticos y priorizar adecuadamente los recursos
clinicos disponibles [13].

Mas alla del rendimiento técnico, la confiabilidad de
estos sistemas juega un papel fundamental en su
adopcion. Diversos estudios han evidenciado que
los modelos de IA pueden alcanzar niveles de
precision comparables o superiores a los de expertos
humanos, especialmente cuando se entrenan con
conjuntos de datos bien etiquetados y heterogéneos.
No obstante, su implementacion requiere no solo
validacion cuantitativa, sino también mecanismos
que permitan explicar y justificar cada decision
clinica, con el fin de generar confianza entre los
profesionales de la salud y pacientes por igual.
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La incorporacion de técnicas de explicabilidad ha
demostrado ser una estrategia efectiva para mejorar
la transparencia de estos sistemas, permitiendo
identificar qué regiones de la imagen influyeron méas
en la prediccion realizada [12]. Esto no solo facilita
auditorias médicas y segundas opiniones, sino que
ademas respalda la integracion ética y legal de la 1A
en sistemas de salud estructurados, particularmente
en procesos como tamizajes automaticos,
diagnésticos asistidos y segundas lecturas remotas.

Este articulo se enfoca en el desarrollo y validacion
de modelos de deteccion binaria de enfermedades
cardiacas basado en IRM y aprendizaje profundo. A
través de la implementacion de aprendizaje
automatico y redes neuronales, se busca ofrecer un
mecanismo eficaz, reproducible y clinicamente
viable para apoyar la toma de decisiones tempranas
en cardiologia, con especial atencion a entornos de
alta demanda o recursos limitados.

2. ESTADO DEL ARTE

En esta seccion se analizan de manera critica los
estudios mas relevantes, agrupados en cinco lineas
temaéticas que representan las principales tendencias
actuales de investigacion.

2.1. Segmentacion automatica de estructuras
cardiacas

Una de las lineas méas consolidadas en la literatura
es la segmentacién automatica de estructuras
cardiacas a partir de IRM. En este campo, el trabajo
de [7] marco un hito al presentar los resultados del
Automatic Cardiac Diagnosis Challenge (ACDC),
donde se evaluaron diversos métodos de aprendizaje
profundo aplicados a la segmentacion del ventriculo
izquierdo (LV), ventriculo derecho (RV) y el
miocardio (MYO). Este benchmark establecié un
estdndar en el &rea, logrando coeficientes Dice
promedio de 0.95 para LV, 0.89 para RV y 0.89 para
MYO, utilizando principalmente arquitecturas
basadas en U-Net. A pesar de los avances, los
autores sefialaron limitaciones en cuanto a la
generalizacion de los modelos fuera del conjunto
ACDC, lo que impulsé investigaciones posteriores
enfocadas en robustez y transferibilidad.

En respuesta a estas limitaciones, en [14]
propusieron una red convolucional que integra
mapas de caracteristicas direccionales (Directional
Feature Maps, DFM), disefiados para capturar
patrones espaciales orientados propios de las
estructuras cardiacas, como bordes curvos y limites
entre el miocardio y las cavidades ventriculares.
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Este enfoque permitié superar las limitaciones de
arquitecturas isotropicas como U-Net, alcanzando
coeficientes Dice de 0.955, 0.901 y 0.888 para LV,
RV y MYO respectivamente, sobre el conjunto
ACDC. El valor afiadido de esta arquitectura radica
en su capacidad para abordar tanto la indistincion
interclase como la variabilidad intraclase, aspectos
criticos para un diagnostico clinico confiable.

Por su parte, en [15] desarrollaron Heart-Net, una
arquitectura multimodal que combina imagenes
IRM con sefiales fisiologicas (ECG y presion
arterial), integrando una CNN y una LSTM en un
enfoque de fusidn tardia. Esta aproximacion no solo
mejora la precision segmentando las estructuras
cardiacas, sino que también permite clasificar
patologias cardiacas con una precisién superior al
98%. La combinacion de informacion morfoldgica
y funcional simula el razonamiento diagnéstico
médico y ha demostrado ser altamente robusta frente
a variaciones anatémicas y ruido clinico.

Complementando estas propuestas, en [16]
introdujeron un sistema hibrido de diagndstico
asistido por computador (CAD) que emplea ResU-
Net para la segmentacion de las estructuras
cardiacas y un Vision Transformer (ViT) para la
clasificacion de regiones infartadas. Este enfoque
fue particularmente efectivo en la identificacion de
tejido miocérdico dafiado, logrando un AUC del
0.98 y una precision diagndstica global del 97.3%.
La capacidad de los transformers de capturar
relaciones espaciales de largo alcance lo hace ideal
para detectar patrones diseminados y sutiles, lo cual
resulta fundamental en el diagnéstico temprano del
infarto de miocardio.

2.2. Clasificacién automatica de enfermedades
cardiacas

La clasificacion directa de patologias cardiacas a
partir de IRM representa una evolucién significativa
respecto a enfoques tradicionales que dependen de
multiples etapas intermedias. En [11] presentaron
SA-YOLO, una version adaptada de YOLOvV8 con
modulos de atencion espacial que permite la
deteccion de patologias directamente desde las
imagenes, sin necesidad de segmentaciones previas.
Este modelo alcanz6 una precision global del 98.1%
y un tiempo de inferencia de 23 ms por imagen,
haciéndolo viable para su uso en tiempo real en
entornos clinicos con limitaciones computacionales.
Mientras tanto, en [17] introdujeron un enfoque
innovador al utilizar campos de deformacion entre
las fases diast6lica y sistélica para codificar la
dinamica contractil del corazén; usando una



ISSN: 1692-7257 - Volumen 1 — NUmero 47 - 2026

arquitectura basada en autoencoders y un
clasificador SVM, lograron una precision media del
94.5%. Este tipo de entrada funcional permite
identificar disfunciones contractiles propias de
enfermedades como la miocardiopatia dilatada
(DCM) o hipertréfica (HCM), proporcionando una
alternativa mas informativa que las imagenes
estaticas.

En otro estudio destacable, en [18] aplicaron Vision
Transformers en combinacion con técnicas de
explicabilidad como Grad-CAM para detectar
miocarditis. Su modelo alcanzd un Fl-score de
0.9741 un AUC de 09616, destacando tanto por su
precision como por su capacidad interpretativa. Este
trabajo representa un avance importante al integrar
explicitamente la visualizacion de las regiones
activas que motivan la clasificacion, mejorando la
transparencia del proceso diagndéstico automatizado.

Finalmente, en [12] adoptaron un enfoque
complementario al integrar algoritmos como
XGBoost y LightGBM sobre variables clinicas
multifuente, sin depender exclusivamente de IRM.
Aungue no segmentan iméagenes, logran una AUC
promedio de 0.989, demostrando que la
combinacion de datos estructurados con modelos de
alto rendimiento puede ofrecer predicciones
confiables incluso en ausencia de imagenologia
detallada.

2.3. Explicabilidad e
modelos

interpretabilidad de

La aceptabilidad de modelos de inteligencia
artificial en contextos clinicos depende no solo de su
precision, sino también de su capacidad de ser
interpretados. En este sentido, en [19] propusieron
una arquitectura de aprendizaje conjunto que
simultaneamente segmenta el miocardio y detecta
tejido cicatricial post-infarto; el modelo incorpora
un mecanismo de atencion que resalta las regiones
relevantes en las predicciones, logrando una
sensibilidad del 91.8% y una precision diagnostica
del 94.6%. La coherencia espacial entre las tareas de
segmentacion y deteccion funcional mejora la
confianza clinica en los resultados.

Asimismo, el trabajo de [18] sobresale por
incorporar Grad-CAM como herramientas de
explicabilidad en un contexto sensible como el
diagnostico de miocarditis. Estas técnicas permiten
validar visual y cuantitativamente las decisiones del
modelo, mostrando qué regiones especificas
influyeron en la prediccion, lo que fortalece la
transparencia y la confianza médica.
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2.4. Validacion clinica y adopcion en entornos
hospitalarios

Una de las barreras para la adopcion de modelos de
IA en medicina es la falta de validacion clinica en
escenarios reales. En este aspecto, en [5] realizaron
un estudio prospectivo en 61 pacientes comparando
secuencias cine convencionales con aquellas
reconstruidas mediante aprendizaje profundo. Su
modelo demostrd una concordancia excelente con
las medidas funcionales tradicionales (r > 0.98) y
redujo el tiempo de adquisicion en un 50%,
mejorando la calidad visual, especialmente en
estructuras subendocardicas.

Por otro lado, en [20], [6] realizaron revisiones
sistematicas del uso de IA en imagenologia
cardiovascular, abordando temas como la
integracion en flujos hospitalarios, la regulacién por
entidades como la FDA, y la trazabilidad de los
modelos. Estas revisiones destacan que, mas alla del
rendimiento técnico, la aceptacion clinica de un
modelo depende de su transparencia, tiempo de
inferencia aceptable y compatibilidad con sistemas
HIS/PACS.

2.5. Diagnostico
multimodales

preventivo 'y enfoques

La aplicacién de IA en medicina no se limita al
diagnéstico actual, sino que se extiende hacia la
prediccion preventiva del riesgo cardiovascular. En
[21] demostraron que redes profundas pueden
predecir eventos cardiacos futuros a partir de
imagenes hepaticas, con un AUC de 0.87, al
combinar IRM abdominal y variables clinicas
mediante  un transformer multimodal. Esta
perspectiva rompe con la logica tradicional de

diagnostico  estructural 'y  permite  explorar
correlaciones latentes en otras modalidades de
imagen.

En el mismo sentido, en [22] entrenaron una CNN
tipo ResNet con mddulos de atencién para clasificar
cinco patologias cardiacas directamente desde IRM
cine sin segmentacion previa. Su modelo logré una
precision del 96.4% y un tiempo de inferencia
inferior a un segundo, lo que lo convierte en una
opcién viable para clinicas con alta carga de
estudios y poco personal especializado.

Finalmente, en [13] sintetizaron los avances en 1A
para enfermedades miocardicas, destacando el papel

emergente de modelos generativos, redes
recurrentes 'y simulaciones virtuales. Estos
enfoques, al integrar mdltiples dimensiones

temporales y morfologicas, amplian el espectro
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diagndstico y sugieren nuevas vias para personalizar
tratamientos y simular progresiones clinicas.

3. MATERIALES Y METODOS
3.1. Descripcién del conjunto de datos

El conjunto de datos utilizado corresponde a
estudios de resonancia magnética cardiaca
almacenados en formato NIfTI, obtenido de [7], con
150 pacientes, dividido en 5 subgrupos (30 sujetos
normales — NOR; 30 pacientes con infarto de
miocardio previo; 30 pacientes con miocardiopatia
dilatada; 30 pacientes con miocardiopatia
hipertréfica; 30 pacientes con ventriculo derecho
anormal). Cada volumen incluye cortes axiales de
diferentes momentos del ciclo cardiaco (por
ejemplo, frame01, framel2), acompafiados de
mascaras segmentadas manualmente (_gt.nii.gz).
Estas mascaras delimitan estructuras como el
miocardio, el ventriculo izquierdo (LV) y derecho
(RV).

Se aplicé una normalizacién min-max por paciente
(basada en los valores de intensidad de cada
volumen). Se interpolaron los cortes axiales a
128x128 0 256%256 pixeles mediante bicubica, se
elimind ruido de fondo con umbral adaptativo, y las
intensidades fueron convertidas a 8 bits. En el caso
de YOLOVS8, las imégenes fueron duplicadas a tres
canales RGB para compatibilidad. EI mismo
pipeline  fue aplicado  uniformemente a
entrenamiento y validacion.

Las imagenes provienen de un repositorio clinico
estructurado en subcarpetas por paciente, con
variabilidad anatémica y temporal. Esta riqueza
permite entrenar modelos robustos para la
clasificacion  binaria (presencia o no de
enfermedad), asi como experimentar con tareas de
segmentacion. El dataset fue montado desde Google
Drive en un entorno colaborativo utilizando Google
Colab.

3.2. Flujo General de Procesamiento

Como paso previo a la implementacién de cada
modelo, se defini6 un flujo genérico de
procesamiento orientado a garantizar la calidad y
consistencia de los datos. Este flujo, representado en
la Fig. 1, comienza con un proceso de limpieza y
normalizacién de los volimenes de resonancia
magnética cardiaca, seguido por un moédulo de
preprocesamiento que incluye el recorte de la region
de interés, la seleccion de cortes axiales
representativos, el reescalado a resoluciones
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estandar (128x128 o 256x256 pixeles), y la
conversion a formatos compatibles con cada
arquitectura  (escala de grises o RGB).
Posteriormente, se aplicaron técnicas de seleccion y
transformacion de caracteristicas segln el enfoque
empleado  (flattening en Random  Forest,
convoluciones en CNN, y procesamiento RGB
directo en YOLOV8). Finalmente, cada modelo fue
entrenado y evaluado de forma independiente
usando las mismas meétricas de desempefio para
permitir una comparacion objetiva. Este enfoque
estructurado asegura la trazabilidad del pipeline y la
replicabilidad de los experimentos.

.
L

Feature Selection
and
Engineering

Model —lp
Training ¢

Fig. 1. Flujo general del procesamiento

Data Cleaning and
Normalization

3.3. Preparacion de datos

El conjunto de datos utilizado se compone de
volimenes tridimensionales en formato .nii.gz, los
cuales fueron divididos 80/20 a nivel de paciente,
agrupando todos los cortes de cada sujeto en el
mismo conjunto, con estratificacion por clase
(sano/enfermo). Esto evitd fuga de informacion y
garantizé independencia entre entrenamiento y
validacion, y procesados previamente para obtener
cortes axiales 2D representativos de cada estudio.

Las etapas del preprocesamiento incluyeron:

- Extraccion del corte medio axial del
volumen, asumiendo que este plano proporciona
una vista representativa del corazon.

- Normalizacion de las intensidades de
pixeles al rango [0, 1] mediante escalado min-max,
con el objetivo de reducir la variabilidad derivada de
condiciones de adquisicién heterogéneas.

- Redimensionamiento uniforme de todas las
imagenes a dimensiones fijas de 128x128 pixeles.

- Conversion a formato plano: dado que el
modelo Random Forest requiere entradas
vectorizadas, cada imagen fue convertida de su
forma matricial (128,128,1) a un vector
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unidimensional de 16,384 caracteristicas mediante
aplanamiento.

Esta transformacion permitié representar cada
imagen como un punto en un espacio de
caracteristicas de alta dimensionalidad,
acompafiado de  una  etiqueta  binaria
correspondiente a la condicion clinica del paciente
(sano =0, enfermo = 1).

Para mejorar la capacidad discriminativa, se
extrajeron caracteristicas radidmicas basadas en
textura GLCM (contrast, dissimilarity,
homogeneity, energy, correlation) y estadisticos de
primer orden (media, varianza, curtosis, asimetria).
Estos descriptores se calcularon por corte usando la
libreria scikit-image y sirvieron como entrada al
modelo de Random Forest

3.4. Aumento de datos

Dado el tamafio reducido del conjunto de datos y su
distribucion levemente desbalanceada, se aplico una
estrategia de data augmentation utilizando
ImageDataGenerator.  Esta  técnica  permite
aumentar la diversidad del conjunto de
entrenamiento mediante transformaciones
aleatorias, sin necesidad de recolectar nuevas
imagenes. Las transformaciones incluyeron:
rotaciones aleatorias (+10°), zoom aleatorio
(x10%), desplazamientos horizontales y verticales
(x10%), y volteo horizontal. Estas operaciones
preservan las caracteristicas anatémicas relevantes y
permiten mejorar la capacidad de generalizacion del
modelo.

4. RESULTADOS
4.1. Desempefio del modelo Random Forest

El modelo Random Forest fue entrenado y evaluado
utilizando imagenes aplanadas provenientes de
cortes axiales de resonancia magnética cardiaca.
Tras el entrenamiento, su desempefio fue evaluado
sobre un conjunto de validacion previamente
separado (20% del total de muestras), obteniéndose
los siguientes resultados cuantitativos:

Precision global (Accuracy): 0.8000
Precision (Precision): 0.8000
Sensibilidad (Recall): 1.0000

F1-score: 0.8889

Area bajo la curva ROC (AUC): 0.6424

En la Figura 2 se presenta la curva ROC
correspondiente al modelo. El area bajo la curva
(AUC = 0.6424) indica una capacidad de
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discriminacién moderada del modelo para distinguir
entre pacientes sanos y enfermos. Si bien la
sensibilidad es elevada, la presencia de falsos
positivos reduce la precision global del clasificador.

Curva ROC - Random Forest
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Fig. 2. Curva ROC del modelo Random Forest.

El desempefio del modelo Random Forest se
caracteriza por una elevada capacidad para detectar
casos positivos (enfermos), lo que lo convierte en
una herramienta potencialmente util en contextos
donde la omision de casos criticos es inaceptable
(alta sensibilidad). No obstante, el nimero de falsos
positivos registrados sugiere que puede generar
alertas innecesarias en algunos pacientes sanos, lo
cual debe ser considerado en aplicaciones clinicas
reales. Este comportamiento también puede
atribuirse a la pérdida de informaciéon espacial
durante el proceso de aplanamiento de las imagenes,
lo que limita la capacidad del modelo para
diferenciar patrones anatémicos sutiles.

4.2. Desempefio del modelo CNN

El modelo fue entrenado y su evaluacion se emple6
sobre un conjunto de compuesto por 30 muestras.
Los resultados obtenidos por la red convolucional
son los siguientes:

Precision global (Accuracy): 0.7000
Precision clase CHD: 0.8000
Recall clase CHD: 0.8333

F1-score clase CHD: 0.8163

La Fig. 3 muestra la matriz de confusion del modelo
CNN. Se observa que la red neuronal identificd
correctamente 20 casos enfermos (CHD) y 1 caso
sano (No CHD). Sin embargo, cometié 5 falsos
positivos, es decir, clasificd incorrectamente
pacientes sanos como enfermos, y 4 falsos
negativos, correspondientes a pacientes enfermos
que  fueron clasificados  como  sanos.
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Este comportamiento refleja que el modelo presenta
un ligero sesgo hacia la clase positiva, privilegiando
la deteccion de casos patoldgicos por encima de la
correcta identificacion de sujetos sanos. Tal
tendencia puede atribuirse al desbalance en el
conjunto de datos (mayor cantidad de imagenes de
pacientes enfermos) o a una limitada capacidad de
generalizacion del modelo para aprender patrones
representativos del miocardio normal.

Matriz de Confusion - CNN

20.0

17.5

Sano 1 5 15.0

12.5

- 10.0

True label

r7.5

Enfermo 4
F5.0

F2.5

sano Enfermo
Predicted label

Fig. 3. Matriz de confusion del modelo CNN.

La curva ROC del modelo, la cual presenta un AUC
de 0.4167, indicando un poder discriminativo
inferior al limite del azar, lo cual no es correcto en
el &rea de la salud. A pesar de que la red logré una
sensibilidad aceptable, el bajo AUC y la incapacidad
de clasificar correctamente los casos negativos
limitan su utilidad diagnostica.

A pesar de su elevada sensibilidad para detectar
casos de CHD, el modelo CNN presentd
deficiencias significativas en la identificacion de
pacientes sanos, lo cual podria resultar en un nimero
elevado de falsos positivos en un escenario clinico.
Este comportamiento puede estar relacionado con el
desequilibrio del conjunto de datos y la posible
necesidad de ajustes adicionales en la arquitectura o
en los métodos de regularizacion. En futuras
versiones del modelo se recomienda aplicar técnicas
como focal loss, class weighting o aumento
especifico para la clase minoritaria.

4.3. Desempefio del modelo YOLOVS8

El desempefio alcanzado por este modelo fue el
siguiente:

Precision global (Accuracy): 0.8000
Precision (Precision): 0.8000
Sensibilidad (Recall): 1.000
F1-score: 0.8900
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La Fig. 4 muestra la curva ROC obtenida a partir de
las probabilidades de clasificacion del modelo
YOLOv8 para la clase positiva (enfermo).
El area bajo la curva (AUC) fue de 0.83, lo que
refleja una capacidad de discriminacion buena,
aunque no sobresaliente.
La curva presenta una forma ascendente y se
aproxima parcialmente al vértice superior izquierdo,
indicando que el modelo logra una alta tasa de
verdaderos positivos con un nimero moderado de
falsos positivos.

Este resultado confirma que YOLOVS8 es capaz de
distinguir con eficacia entre sujetos sanos Yy
enfermos, aunque su desempefio podria mejorar
mediante una calibracién mas precisa del umbral de
decision o un mayor equilibrio entre clases.

Curva ROC - Clasificacién YOLOvS (por paciente)
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Fig. 4. Curva ROC del modelo YOLOVS.

El modelo mostré un rendimiento superior frente a
los otros enfoques evaluados, tanto en términos de
precision como de equilibrio entre clases. Su
capacidad para generalizar correctamente sobre un
conjunto de validacién diverso, sumado a su baja
tasa de error y su alta puntuacién AUC, lo posiciona
como una alternativa altamente viable para la
deteccidn automatizada de enfermedades cardiacas
congénitas a partir de imagenes médicas. La
estabilidad del modelo también sugiere un
aprendizaje efectivo de patrones discriminativos sin
sobreajuste, incluso en un entorno clinico con
recursos moderados.

4.4. Explicabilidad de los modelos
4.4.1. Random Forest
Con el prop6sito de comprender cémo el modelo

toma sus decisiones y validar la relevancia
fisiolégica de las caracteristicas utilizadas, se
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implementaron dos enfoques complementarios de
explicabilidad global y local:

SHAP (SHapley Additive Explanations), basado en
teoria de juegos cooperativos. Permutation
Importance, que evalla la variacion del desempefio
del modelo al alterar aleatoriamente cada variable.
Ambos métodos se aplicaron sobre el conjunto de
validacion, empleando los seis descriptores
radiémicos obtenidos a partir de la matriz de co-
ocurrencia de niveles de gris (GLCM):
Homogeneity, Energy, ASM (Angular Second
Moment), Contrast, Dissimilarity y Correlation.

High
glem_homogeneity . e 0 e | e ST

glem_energy R P E A NN

glcm_ASM . o . eres

glem_contrast o = . PR S

Feature value

glem_dissimilarity o seeeee ofRUZ..

glcm_correlation s s 23% &

Low

-0.15 -0.10 -0.05 0.00 0.05
SHAP value (impact on model output)

Fig. 5. Impacto del modelo en las salidas

El andlisis de valores absolutos medios de SHAP
(ver Fig. 5) permitié identificar que las variables con
mayor impacto en la prediccién fueron:

e GLCM_Homogeneity (0.0449),
e GLCM_Energy (0.0442),
¢ GLCM_ASM (0.0436).

Estas tres caracteristicas se asocian con la
uniformidad del tejido miocardico. Los pacientes
con valores altos de homogeneidad y energia
tendieron a clasificarse como sanos, mientras que
texturas mas heterogéneas (baja homogeneidad, alto
contraste) se vincularon a la clase enfermo. Las
variables Contrast, Dissimilarity y Correlation
tuvieron menor contribucion, aunque su efecto
combinado ayudd a distinguir alteraciones
estructurales leves. La representacion de SHAP
individual mostrd una tendencia coherente: los
valores negativos de homogeneidad disminuyen la
probabilidad de ser sano, y los positivos la
aumentan, lo que confirma que el modelo
internalizé un patrén clinicamente consistente.
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Fig. 6. Importancia de la permutacion.

En cuanto a importancia de permutacién, la Fig. 6
muestra la importancia promedio y la desviacion
estandar obtenidas mediante el método de
permutacion.  Los  resultados  coincidieron
parcialmente con SHAP: homogeneidad mantuvo el
primer lugar en relevancia (0.0333), seguida de
Correlacion  (0.0122) y Contraste (0.0033).
No obstante, variables como ASM vy Energy
mostraron ligeras  variaciones  negativas,
evidenciando cierta redundancia entre ellas, lo cual
es esperable dado que ambas reflejan uniformidad y
textura suave. La concordancia entre SHAP vy
Permutacién, sugieren una consistencia interna alta
en el modelo, la dominancia de descriptores de
uniformidad implica que el modelo asocia
dispersion de intensidades con patologia, coherente
con los cambios estructurales tipicos de la
miocardiopatia (hipertrofia, fibrosis 0
remodelacion). Para finalizar, dado que Ramdon
Forest no opera directamente sobre la imagen sino
sobre vectores de caracteristicas globales, su
interpretabilidad espacial es limitada; sin embargo,
ofrece una explicabilidad conceptual clara basada en
propiedades estadisticas del tejido.

4.4.2.CNN

El modelo de red neuronal convolucional (CNN) fue
analizado mediante tres técnicas complementarias
de explicabilidad visual:

- Grad-CAM (Gradient-weighted Class
Activation Mapping)
- Saliency Maps

- Integrated Gradients (1G).

Estas herramientas permiten identificar las regiones
de la imagen que mas influyen en la prediccion final,
aportando una interpretacion espacial directa sobre
la atencion del modelo.
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La técnica Grad-CAM (ver Fig. 7) generdé mapas de
calor que indican qué regiones del corte axial
activaron mas  intensamente  las  capas
convolucionales al clasificar un paciente como
enfermo.

Grad-CAM (idx=1)

Grad-CAM (idx=0)

Fig. 7. Mapas de calor Grad-CAM

En la mayoria de los casos positivos, las zonas rojas
y amarillas se concentraron en el ventriculo
izquierdo y el septo interventricular, areas
comunmente afectadas en cardiopatias hipertréficas
y dilatadas. En pacientes sanos, las activaciones
fueron més uniformes y dispersas, lo que refleja
menor atencion del modelo a regiones especificas.

En la Fig. 8, se aprecia que se calcularon los
gradientes de la salida respecto a cada pixel de
entrada, evidenciando qué zonas provocan los
mayores cambios en la probabilidad de
clasificacion.

Saliency (idx=0] Saliency (idx=1)

Fig. 8. Mapas de Saliencia

Estas visualizaciones resaltaron contornos del
corazén y bordes ventriculares, indicando que el
modelo baso sus decisiones en la formay limites del
miocardio. El patrén observado confirma que la
CNN aprende rasgos de textura y geometria, pero no
logra discriminar completamente entre sanos y
enfermos, ya que muchos bordes aparecen
destacados incluso en cortes sin patologia.
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Integrated Gradients (idx=0) Integrated Gradients (idx=1)

Fig. 9. Gradientes integrados
La técnica gradientes integrados como se aprecia en
la Fig. 9, ofreci6 una perspectiva mas estable,
reduciendo el ruido caracteristico de los gradientes
puros.

Los resultados mostraron concentraciones de
intensidad moderada sobre el miocardio medio-
septal y las paredes ventriculares, lo cual coincide
con las zonas que el Grad-CAM identific6 como
mé&s relevantes. Esta coincidencia entre métodos
refuerza la confianza en que la CNN si esta
aprendiendo patrones anatomicamente plausibles,
aunque su precision global sea limitada.

4.4.3.YOLOVS

Este modelo, originalmente disefiado para deteccion
de objetos, fue adaptado a la tarea de clasificacion
binaria de cardiopatias. Debido a su naturaleza
completamente convolucional y a la presencia de
capas de feature pyramids y self-attention, su
comportamiento interno resulta menos intuitivo que
el de una CNN tradicional. Por tanto, se aplicaron
dos métodos de explicabilidad espacial: Grad-CAM
y Sensibilidad a la oclusién, con el objetivo de
analizar las regiones anatémicas que contribuyen a
la prediccion final y validar la coherencia de sus
activaciones. Los mapas Grad-CAM generados
sobre los cortes axiales mas representativos de cada
paciente (ver Fig. 10) evidenciaron activaciones
intensas en las cavidades ventriculares y el septo
interventricular en los casos clasificados como
enfermos.

Grad-CAM (patient_pac6) Grad-CAM (patient_pac7)

Fig. 10. Mapas Grad-CAM (pac6 y pac7)
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En particular, los pacientes pac6 y pac7 mostraron
zonas calientes (rojas y amarillas) concentradas en
el ventriculo izquierdo y en la pared septal,
coherentes con la localizacién tipica de alteraciones
en miocardiopatias dilatadas o hipertréficas.

En el caso del paciente pac27 (ver Fig. 11), el mapa
Grad-CAM present6 activaciones ligeramente
desplazadas hacia areas periféricas, reflejando una
prediccion con confianza moderada (probabilidad
de 0.61).

Grad-CAM (

patient_pac27)
-

Fig. 11. Mapas Grad-CAM(pac27)

Esto sugiere que, aunque el modelo reconoce
sefiales patoldgicas, su atencion puede dispersarse
en casos con texturas cardiacas menos pronunciadas
0 con bajo contraste. En pacientes sanos, las
activaciones Grad-CAM se distribuyeron de forma
difusa, sin concentraciones claras, lo cual coincide
con la ausencia de patrones estructurales anémalos.

Para complementar el analisis, se aplicé el método
de Sensibilidad a la oclusion (ver Fig. 12), el cual
mide la disminucién de probabilidad al enmascarar
parches locales de la imagen.

Occlusion (patient_pac6) Occlusion (patient_pac7)

Fig. 12. Occlusion Sensitivity (pac6, pac7)

Los resultados mostraron que las regiones cuya
oclusién provocO mayor caida de probabilidad
(zonas amarillas y rojas) coincidieron con las
mismas areas destacadas por Grad-CAM: paredes
ventriculares y septo interventricular.

En los pacientes enfermos, la oclusion del ventriculo
izquierdo redujo la probabilidad de la clase
“enfermo” en mas del 40%, confirmando que estas

Universidad de Pamplona
I.1.D.T.A.

43

RCTA

¥, Revista Colomblana de Tecnologfas de Avanzada %™
UNIPAMPLONA

regiones son criticamente determinantes para la
decision del modelo, en cambio, en los pacientes
sanos, la oclusién no produjo cambios significativos
en la salida, lo que valida la especificidad de la
atencion.

5. CONCLUSION

Este estudio present6 una comparacion sistematica
entre tres enfoques representativos de la inteligencia
artificial aplicados a la deteccion de cardiopatias
mediante imagenes de resonancia magnética
cardiaca: aprendizaje computacional clésico
(Random Forest), redes neuronales convolucionales
(CNN) y modelos de clasificacion optimizados
(YOLOVS).

La metodologia abarc6 desde el preprocesamiento
de iméagenes y la extraccion de caracteristicas hasta
la evaluacién del rendimiento con métricas
estandarizadas (accuracy, precision, recall, F1-score
y AUC), complementada con un andlisis de
explicabilidad (XAIl) que permiti6é interpretar las
decisiones de cada modelo.

Los resultados mostraron que YOLOV8 obtuvo el
mejor desempefio global, con accuracy y precision
del 80%, F1-score de 0.89 y un AUC de 0.83,
reflejando una buena capacidad de discriminacion
entre pacientes sanos y enfermos, su arquitectura
permitié conservar informacion espacial relevante y
detectar patrones estructurales complejos en el
miocardio, demostrando su potencial para tareas
médicas criticas. Por otro lado, el Random Forest
también logr6 un rendimiento competitivo
(accuracy = 0.80; recall = 1.00), apoyandose en
descriptores texturales derivados de matrices
GLCM; mientras que la CNN obtuvo un desempefio
inferior (AUC = 0.4167), mostrando dificultad para
generalizar correctamente la clase negativa debido
al desbalance de datos.

Desde la perspectiva de la inteligencia artificial
explicable, los tres enfoques evidenciaron
coherencia  fisiolégica en sus decisiones.
El Random Forest bas6 su clasificacion en
propiedades texturales homogéneas del tejido
miocardico; la CNN focaliz6 parcialmente su
atencion en el ventriculo izquierdo y el septo
interventricular; y YOLOV8 concentr6 sus
activaciones en  regiones  anatémicamente
relevantes, confirmando su capacidad de
representacion espacial. Estos hallazgos subrayan
que la explicabilidad no solo aporta transparencia,
sino también una herramienta de validacion clinica
complementaria al rendimiento cuantitativo.
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En el ambito clinico, la alta sensibilidad observada,
especialmente en YOLOv8 y Random Forest,
resulta alentadora para el desarrollo de sistemas de
apoyo al diagnostico; sin embargo, la presencia de
falsos positivos en los modelos basados en
aprendizaje profundo pone de manifiesto la
necesidad de recalibrar umbrales de decision,
mejorar el balance de clases e incorporar
validaciones cruzadas con especialistas.

Finalmente, en este trabajo se demuestra que la
inteligencia artificial es una via viable y robusta para
el diagndstico asistido de cardiopatias estructurales.
Modelos como YOLOv8 combinan rendimiento y
explicabilidad, ofreciendo una base sélida para su
implementacion en flujos de trabajo clinicos reales.
Futuras investigaciones deberdn centrarse en
aumentar la diversidad de los datos, optimizar la
interpretabilidad y evaluar la reproducibilidad
multicéntrica de estos modelos, consolidando su
papel como herramientas de soporte clinico
confiables y transparentes.
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