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Resumen: En este trabajo se compararon tres técnicas de inteligencia artificial para la 

detección binaria (sano/enfermo) de cardiopatías mediante cortes axiales de resonancia 

magnética cardíaca. Usando un conjunto de 150 pacientes en formato NIfTI, las imágenes 

se preprocesaron (normalización, reescalado a 128 × 128, conversión a RGB y aumento de 

datos) y se dividieron en una proporción 80/20 por paciente. Se evaluaron Random Forest 

con descriptores radiómicos GLCM y estadísticos de primer orden, una red neuronal 

convolucional (CNN) y un modelo basado en YOLOv8 adaptado a clasificación binaria. 

Los modelos se compararon mediante accuracy, precision, recall, F1-score y AUC, y se 

aplicaron técnicas de explicabilidad (SHAP, Grad-CAM, Integrated Gradients y 

sensibilidad a la oclusión) para validar la coherencia anatómica de las predicciones. En 

conjunto, los resultados indican que los enfoques de aprendizaje profundo preentrenado, 

como YOLOv8, ofrecen ventajas sustanciales en términos de precisión e interpretabilidad, 

posicionándose como una alternativa prometedora para el desarrollo de sistemas 

inteligentes de apoyo al diagnóstico de cardiopatías estructurales. 

 

Palabras clave: cardiopatías, resonancia magnética cardíaca, YOLOv8, Random Forest, 

CNN, inteligencia artificial. 

 

Abstract: In this study, three artificial intelligence techniques were compared for the binary 

detection (healthy/diseased) of cardiopathies using axial slices from cardiac magnetic 

resonance imaging. Using a dataset of 150 patients in NIfTI format, the images were 

preprocessed (normalization, rescaling to 128 × 128, RGB conversion, and data 

augmentation) and split on a per-patient basis using an 80/20 ratio. A Random Forest model 

with GLCM radiomic descriptors and first-order statistical features, a convolutional neural 

network (CNN), and a YOLOv8-based model adapted for binary classification were 

evaluated. The models were compared using accuracy, precision, recall, F1-score, and 

AUC, and explainability techniques (SHAP, Grad-CAM, Integrated Gradients, and 
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occlusion sensitivity) were applied to validate the anatomical coherence of the predictions. 

Overall, the results indicate that pretrained deep learning approaches, such as YOLOv8, 

offer substantial advantages in terms of accuracy and interpretability, positioning them as 

a promising alternative for the development of intelligent decision-support systems for the 

diagnosis of structural cardiopathies. 

 

Keywords: heart disease, MRI, YOLOv8, Random Forest, CNN, artificial intelligence. 

 

 

1. INTRODUCCIÓN 

 

Las enfermedades cardiovasculares siguen siendo la 

principal causa de muerte en el mundo, 

representando aproximadamente el 32% de todas las 

defunciones globales cada año, según la 

Organización Mundial de la Salud (OMS) [1]. Se 

estima que más de 17.9 millones de personas 

fallecen anualmente por causas relacionadas con el 

corazón y los vasos sanguíneos, una cifra que 

continúa en ascenso debido al envejecimiento 

poblacional, los cambios en los estilos de vida y la 

limitada cobertura de estrategias preventivas. La 

OMS ha enfatizado la necesidad de intervenciones 

tempranas, especialmente en países de ingresos 

medios y bajos, donde la carga de enfermedad 

cardiovascular ha mostrado una tendencia alarmante 

al alza. 

 

En Colombia, esta situación no es ajena. El 

Ministerio de Salud y Protección Social ha 

reportado que, durante los últimos años, las 

enfermedades del sistema circulatorio han ocupado 

consistentemente los primeros lugares como causa 

de muerte en el país, siendo la enfermedad 

isquémica del corazón, los accidentes 

cerebrovasculares y las enfermedades hipertensivas 

las más prevalentes [2]. En 2022, se estimó una tasa 

de mortalidad por enfermedades cardiovasculares 

cercana a 176 muertes por cada 100 000 habitantes, 

con una carga mayor en adultos mayores y zonas 

rurales [3]. A pesar de avances en infraestructura 

hospitalaria y cobertura, persisten desafíos 

estructurales relacionados con el acceso equitativo 

al diagnóstico oportuno, especialmente en regiones 

con escasa cobertura especializada. En este 

escenario, la adopción de tecnologías capaces de 

facilitar la detección temprana y eficiente de 

enfermedades cardiovasculares, como soluciones 

basadas en inteligencia artificial, se perfila como 

una prioridad de salud pública [4]. 

 

Frente a este panorama, la detección precoz y 

precisa de condiciones cardíacas, incluso antes de 

que se manifiesten clínicamente, se ha convertido en 

un objetivo clave de la medicina moderna. Entre las 

herramientas diagnósticas disponibles, la resonancia 

magnética cardíaca (IRM) destaca por su capacidad 

para ofrecer imágenes detalladas de la morfología y 

función del corazón, sin exposición a radiación 

ionizante [5], [6]. Sin embargo, el análisis 

tradicional de estas imágenes depende de la 

interpretación visual por parte de expertos, una 

práctica sujeta a variabilidad inter observador, 

demandante en tiempo y no siempre accesible en 

todos los entornos clínicos [7]. 

 

En este contexto, la inteligencia artificial (IA) ha 

emergido como una solución prometedora para 

automatizar procesos diagnósticos, reducir la carga 

clínica y mejorar la consistencia del análisis [8]. Se 

han desarrollado múltiples modelos basados en 

aprendizaje profundo que permiten segmentar 

cavidades cardíacas, cuantificar volúmenes o 

clasificar patologías específicas a partir de imágenes 

médicas [9], [10]. Sin embargo, en la práctica clínica 

diaria, muchas decisiones iniciales se reducen a una 

pregunta fundamental: ¿existe o no una condición 

cardíaca que amerite atención? 

 

Abordar esta pregunta desde un enfoque binario 

presencia o ausencia de enfermedad resulta 

especialmente relevante en escenarios como cribado 

poblacional, triaje en urgencias o telemedicina [11], 

[12]. En tales contextos, modelos ligeros, 

interpretables y eficientes, capaces de ofrecer 

respuestas confiables a partir de imágenes básicas, 

podrían ser determinantes para reducir tiempos 

diagnósticos y priorizar adecuadamente los recursos 

clínicos disponibles [13]. 

 

Más allá del rendimiento técnico, la confiabilidad de 

estos sistemas juega un papel fundamental en su 

adopción. Diversos estudios han evidenciado que 

los modelos de IA pueden alcanzar niveles de 

precisión comparables o superiores a los de expertos 

humanos, especialmente cuando se entrenan con 

conjuntos de datos bien etiquetados y heterogéneos. 

No obstante, su implementación requiere no solo 

validación cuantitativa, sino también mecanismos 

que permitan explicar y justificar cada decisión 

clínica, con el fin de generar confianza entre los 

profesionales de la salud y pacientes por igual. 
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La incorporación de técnicas de explicabilidad ha 

demostrado ser una estrategia efectiva para mejorar 

la transparencia de estos sistemas, permitiendo 

identificar qué regiones de la imagen influyeron más 

en la predicción realizada [12]. Esto no solo facilita 

auditorías médicas y segundas opiniones, sino que 

además respalda la integración ética y legal de la IA 

en sistemas de salud estructurados, particularmente 

en procesos como tamizajes automáticos, 

diagnósticos asistidos y segundas lecturas remotas. 

 

Este artículo se enfoca en el desarrollo y validación 

de modelos de detección binaria de enfermedades 

cardíacas basado en IRM y aprendizaje profundo. A 

través de la implementación de aprendizaje 

automático y redes neuronales, se busca ofrecer un 

mecanismo eficaz, reproducible y clínicamente 

viable para apoyar la toma de decisiones tempranas 

en cardiología, con especial atención a entornos de 

alta demanda o recursos limitados. 
 

2. ESTADO DEL ARTE 

 

En esta sección se analizan de manera crítica los 

estudios más relevantes, agrupados en cinco líneas 

temáticas que representan las principales tendencias 

actuales de investigación. 

 

2.1.  Segmentación automática de estructuras 

cardíacas 

 

Una de las líneas más consolidadas en la literatura 

es la segmentación automática de estructuras 

cardíacas a partir de IRM. En este campo, el trabajo 

de [7] marcó un hito al presentar los resultados del 

Automatic Cardiac Diagnosis Challenge (ACDC), 

donde se evaluaron diversos métodos de aprendizaje 

profundo aplicados a la segmentación del ventrículo 

izquierdo (LV), ventrículo derecho (RV) y el 

miocardio (MYO). Este benchmark estableció un 

estándar en el área, logrando coeficientes Dice 

promedio de 0.95 para LV, 0.89 para RV y 0.89 para 

MYO, utilizando principalmente arquitecturas 

basadas en U-Net. A pesar de los avances, los 

autores señalaron limitaciones en cuanto a la 

generalización de los modelos fuera del conjunto 

ACDC, lo que impulsó investigaciones posteriores 

enfocadas en robustez y transferibilidad. 

 

En respuesta a estas limitaciones, en [14] 

propusieron una red convolucional que integra 

mapas de características direccionales (Directional 

Feature Maps, DFM), diseñados para capturar 

patrones espaciales orientados propios de las 

estructuras cardíacas, como bordes curvos y límites 

entre el miocardio y las cavidades ventriculares. 

Este enfoque permitió superar las limitaciones de 

arquitecturas isotrópicas como U-Net, alcanzando 

coeficientes Dice de 0.955, 0.901 y 0.888 para LV, 

RV y MYO respectivamente, sobre el conjunto 

ACDC. El valor añadido de esta arquitectura radica 

en su capacidad para abordar tanto la indistinción 

interclase como la variabilidad intraclase, aspectos 

críticos para un diagnóstico clínico confiable. 

 

Por su parte, en [15] desarrollaron Heart-Net, una 

arquitectura multimodal que combina imágenes 

IRM con señales fisiológicas (ECG y presión 

arterial), integrando una CNN y una LSTM en un 

enfoque de fusión tardía. Esta aproximación no solo 

mejora la precisión segmentando las estructuras 

cardíacas, sino que también permite clasificar 

patologías cardíacas con una precisión superior al 

98%. La combinación de información morfológica 

y funcional simula el razonamiento diagnóstico 

médico y ha demostrado ser altamente robusta frente 

a variaciones anatómicas y ruido clínico. 

 

Complementando estas propuestas, en [16] 

introdujeron un sistema híbrido de diagnóstico 

asistido por computador (CAD) que emplea ResU-

Net para la segmentación de las estructuras 

cardíacas y un Vision Transformer (ViT) para la 

clasificación de regiones infartadas. Este enfoque 

fue particularmente efectivo en la identificación de 

tejido miocárdico dañado, logrando un AUC del 

0.98 y una precisión diagnóstica global del 97.3%. 

La capacidad de los transformers de capturar 

relaciones espaciales de largo alcance lo hace ideal 

para detectar patrones diseminados y sutiles, lo cual 

resulta fundamental en el diagnóstico temprano del 

infarto de miocardio. 

 

2.2. Clasificación automática de enfermedades 

cardíacas 

 

La clasificación directa de patologías cardíacas a 

partir de IRM representa una evolución significativa 

respecto a enfoques tradicionales que dependen de 

múltiples etapas intermedias. En  [11] presentaron 

SA-YOLO, una versión adaptada de YOLOv8 con 

módulos de atención espacial que permite la 

detección de patologías directamente desde las 

imágenes, sin necesidad de segmentaciones previas. 

Este modelo alcanzó una precisión global del 98.1% 

y un tiempo de inferencia de 23 ms por imagen, 

haciéndolo viable para su uso en tiempo real en 

entornos clínicos con limitaciones computacionales. 

Mientras tanto, en [17] introdujeron un enfoque 

innovador al utilizar campos de deformación entre 

las fases diastólica y sistólica para codificar la 

dinámica contráctil del corazón; usando una 
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arquitectura basada en autoencoders y un 

clasificador SVM, lograron una precisión media del 

94.5%. Este tipo de entrada funcional permite 

identificar disfunciones contráctiles propias de 

enfermedades como la miocardiopatía dilatada 

(DCM) o hipertrófica (HCM), proporcionando una 

alternativa más informativa que las imágenes 

estáticas. 

 

En otro estudio destacable, en [18] aplicaron Vision 

Transformers en combinación con técnicas de 

explicabilidad como Grad-CAM para detectar 

miocarditis. Su modelo alcanzó un F1-score de 

0.9741  un AUC de 09616, destacando tanto por su 

precisión como por su capacidad interpretativa. Este 

trabajo representa un avance importante al integrar 

explícitamente la visualización de las regiones 

activas que motivan la clasificación, mejorando la 

transparencia del proceso diagnóstico automatizado. 

 

Finalmente, en [12] adoptaron un enfoque 

complementario al integrar algoritmos como 

XGBoost y LightGBM sobre variables clínicas 

multifuente, sin depender exclusivamente de IRM. 

Aunque no segmentan imágenes, logran una AUC 

promedio de 0.989, demostrando que la 

combinación de datos estructurados con modelos de 

alto rendimiento puede ofrecer predicciones 

confiables incluso en ausencia de imagenología 

detallada. 

 

2.3. Explicabilidad e interpretabilidad de 

modelos 

 

La aceptabilidad de modelos de inteligencia 

artificial en contextos clínicos depende no solo de su 

precisión, sino también de su capacidad de ser 

interpretados. En este sentido, en [19] propusieron 

una arquitectura de aprendizaje conjunto que 

simultáneamente segmenta el miocardio y detecta 

tejido cicatricial post-infarto; el modelo incorpora 

un mecanismo de atención que resalta las regiones 

relevantes en las predicciones, logrando una 

sensibilidad del 91.8% y una precisión diagnóstica 

del 94.6%. La coherencia espacial entre las tareas de 

segmentación y detección funcional mejora la 

confianza clínica en los resultados. 

 

Asimismo, el trabajo de [18] sobresale por 

incorporar Grad-CAM como herramientas de 

explicabilidad en un contexto sensible como el 

diagnóstico de miocarditis. Estas técnicas permiten 

validar visual y cuantitativamente las decisiones del 

modelo, mostrando qué regiones específicas 

influyeron en la predicción, lo que fortalece la 

transparencia y la confianza médica. 

2.4. Validación clínica y adopción en entornos 

hospitalarios 

 

Una de las barreras para la adopción de modelos de 

IA en medicina es la falta de validación clínica en 

escenarios reales. En este aspecto, en [5] realizaron 

un estudio prospectivo en 61 pacientes comparando 

secuencias cine convencionales con aquellas 

reconstruidas mediante aprendizaje profundo. Su 

modelo demostró una concordancia excelente con 

las medidas funcionales tradicionales (r > 0.98) y 

redujo el tiempo de adquisición en un 50%, 

mejorando la calidad visual, especialmente en 

estructuras subendocárdicas. 

 

Por otro lado, en  [20],  [6] realizaron revisiones 

sistemáticas del uso de IA en imagenología 

cardiovascular, abordando temas como la 

integración en flujos hospitalarios, la regulación por 

entidades como la FDA, y la trazabilidad de los 

modelos. Estas revisiones destacan que, más allá del 

rendimiento técnico, la aceptación clínica de un 

modelo depende de su transparencia, tiempo de 

inferencia aceptable y compatibilidad con sistemas 

HIS/PACS. 

 

2.5. Diagnóstico preventivo y enfoques 

multimodales 

 

La aplicación de IA en medicina no se limita al 

diagnóstico actual, sino que se extiende hacia la 

predicción preventiva del riesgo cardiovascular. En 

[21] demostraron que redes profundas pueden 

predecir eventos cardíacos futuros a partir de 

imágenes hepáticas, con un AUC de 0.87, al 

combinar IRM abdominal y variables clínicas 

mediante un transformer multimodal. Esta 

perspectiva rompe con la lógica tradicional de 

diagnóstico estructural y permite explorar 

correlaciones latentes en otras modalidades de 

imagen. 

 

En el mismo sentido, en [22] entrenaron una CNN 

tipo ResNet con módulos de atención para clasificar 

cinco patologías cardíacas directamente desde IRM 

cine sin segmentación previa. Su modelo logró una 

precisión del 96.4% y un tiempo de inferencia 

inferior a un segundo, lo que lo convierte en una 

opción viable para clínicas con alta carga de 

estudios y poco personal especializado. 

Finalmente, en  [13] sintetizaron los avances en IA 

para enfermedades miocárdicas, destacando el papel 

emergente de modelos generativos, redes 

recurrentes y simulaciones virtuales. Estos 

enfoques, al integrar múltiples dimensiones 

temporales y morfológicas, amplían el espectro 
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diagnóstico y sugieren nuevas vías para personalizar 

tratamientos y simular progresiones clínicas. 

 

3. MATERIALES Y MÉTODOS 

 

3.1. Descripción del conjunto de datos 

 

El conjunto de datos utilizado corresponde a 

estudios de resonancia magnética cardíaca 

almacenados en formato NIfTI, obtenido de [7], con 

150 pacientes, dividido en 5 subgrupos (30 sujetos 

normales – NOR; 30 pacientes con infarto de 

miocardio previo; 30 pacientes con miocardiopatía 

dilatada; 30 pacientes con miocardiopatía 

hipertrófica; 30 pacientes con ventrículo derecho 

anormal). Cada volumen incluye cortes axiales de 

diferentes momentos del ciclo cardíaco (por 

ejemplo, frame01, frame12), acompañados de 

máscaras segmentadas manualmente (_gt.nii.gz). 

Estas máscaras delimitan estructuras como el 

miocardio, el ventrículo izquierdo (LV) y derecho 

(RV). 

 

Se aplicó una normalización min-max por paciente 

(basada en los valores de intensidad de cada 

volumen). Se interpolaron los cortes axiales a 

128×128 o 256×256 píxeles mediante bicúbica, se 

eliminó ruido de fondo con umbral adaptativo, y las 

intensidades fueron convertidas a 8 bits. En el caso 

de YOLOv8, las imágenes fueron duplicadas a tres 

canales RGB para compatibilidad. El mismo 

pipeline fue aplicado uniformemente a 

entrenamiento y validación. 

 

Las imágenes provienen de un repositorio clínico 

estructurado en subcarpetas por paciente, con 

variabilidad anatómica y temporal. Esta riqueza 

permite entrenar modelos robustos para la 

clasificación binaria (presencia o no de 

enfermedad), así como experimentar con tareas de 

segmentación. El dataset fue montado desde Google 

Drive en un entorno colaborativo utilizando Google 

Colab. 

 

3.2. Flujo General de Procesamiento 

 

Como paso previo a la implementación de cada 

modelo, se definió un flujo genérico de 

procesamiento orientado a garantizar la calidad y 

consistencia de los datos. Este flujo, representado en 

la Fig. 1, comienza con un proceso de limpieza y 

normalización de los volúmenes de resonancia 

magnética cardíaca, seguido por un módulo de 

preprocesamiento que incluye el recorte de la región 

de interés, la selección de cortes axiales 

representativos, el reescalado a resoluciones 

estándar (128×128 o 256×256 píxeles), y la 

conversión a formatos compatibles con cada 

arquitectura (escala de grises o RGB).  

Posteriormente, se aplicaron técnicas de selección y 

transformación de características según el enfoque 

empleado (flattening en Random Forest, 

convoluciones en CNN, y procesamiento RGB 

directo en YOLOv8). Finalmente, cada modelo fue 

entrenado y evaluado de forma independiente 

usando las mismas métricas de desempeño para 

permitir una comparación objetiva. Este enfoque 

estructurado asegura la trazabilidad del pipeline y la 

replicabilidad de los experimentos. 

 

 
Fig. 1. Flujo general del procesamiento 

 

3.3. Preparación de datos 

 

El conjunto de datos utilizado se compone de 

volúmenes tridimensionales en formato .nii.gz, los 

cuales fueron divididos 80/20 a nivel de paciente, 

agrupando todos los cortes de cada sujeto en el 

mismo conjunto, con estratificación por clase 

(sano/enfermo). Esto evitó fuga de información y 

garantizó independencia entre entrenamiento y 

validación, y procesados previamente para obtener 

cortes axiales 2D representativos de cada estudio. 

  

Las etapas del preprocesamiento incluyeron: 

 

- Extracción del corte medio axial del 

volumen, asumiendo que este plano proporciona 

una vista representativa del corazón. 

- Normalización de las intensidades de 

píxeles al rango [0, 1] mediante escalado min-max, 

con el objetivo de reducir la variabilidad derivada de 

condiciones de adquisición heterogéneas.  

- Redimensionamiento uniforme de todas las 

imágenes a dimensiones fijas de 128×128 píxeles. 

- Conversión a formato plano: dado que el 

modelo Random Forest requiere entradas 

vectorizadas, cada imagen fue convertida de su 

forma matricial (128,128,1) a un vector 
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unidimensional de 16,384 características mediante 

aplanamiento. 

  

Esta transformación permitió representar cada 

imagen como un punto en un espacio de 

características de alta dimensionalidad, 

acompañado de una etiqueta binaria 

correspondiente a la condición clínica del paciente 

(sano = 0, enfermo = 1). 

 

Para mejorar la capacidad discriminativa, se 

extrajeron características radiómicas basadas en 

textura GLCM (contrast, dissimilarity, 

homogeneity, energy, correlation) y estadísticos de 

primer orden (media, varianza, curtosis, asimetría). 

Estos descriptores se calcularon por corte usando la 

librería scikit-image y sirvieron como entrada al 

modelo de Random Forest 

 

3.4. Aumento de datos 

 

Dado el tamaño reducido del conjunto de datos y su 

distribución levemente desbalanceada, se aplicó una 

estrategia de data augmentation utilizando 

ImageDataGenerator. Esta técnica permite 

aumentar la diversidad del conjunto de 

entrenamiento mediante transformaciones 

aleatorias, sin necesidad de recolectar nuevas 

imágenes. Las transformaciones incluyeron: 

rotaciones aleatorias (±10°), zoom aleatorio 

(±10%), desplazamientos horizontales y verticales 

(±10%), y volteo horizontal. Estas operaciones 

preservan las características anatómicas relevantes y 

permiten mejorar la capacidad de generalización del 

modelo. 

 

4. RESULTADOS 

 

4.1. Desempeño del modelo Random Forest 

 

El modelo Random Forest fue entrenado y evaluado 

utilizando imágenes aplanadas provenientes de 

cortes axiales de resonancia magnética cardíaca. 

Tras el entrenamiento, su desempeño fue evaluado 

sobre un conjunto de validación previamente 

separado (20% del total de muestras), obteniéndose 

los siguientes resultados cuantitativos: 

 
Precisión global (Accuracy): 0.8000 

Precisión (Precision): 0.8000 

Sensibilidad (Recall): 1.0000 

F1-score: 0.8889  

Área bajo la curva ROC (AUC): 0.6424 

 

En la Figura 2 se presenta la curva ROC 

correspondiente al modelo. El área bajo la curva 

(AUC = 0.6424) indica una capacidad de 

discriminación moderada del modelo para distinguir 

entre pacientes sanos y enfermos. Si bien la 

sensibilidad es elevada, la presencia de falsos 

positivos reduce la precisión global del clasificador. 

 

 
Fig. 2. Curva ROC del modelo Random Forest. 

 

El desempeño del modelo Random Forest se 

caracteriza por una elevada capacidad para detectar 

casos positivos (enfermos), lo que lo convierte en 

una herramienta potencialmente útil en contextos 

donde la omisión de casos críticos es inaceptable 

(alta sensibilidad). No obstante, el número de falsos 

positivos registrados sugiere que puede generar 

alertas innecesarias en algunos pacientes sanos, lo 

cual debe ser considerado en aplicaciones clínicas 

reales. Este comportamiento también puede 

atribuirse a la pérdida de información espacial 

durante el proceso de aplanamiento de las imágenes, 

lo que limita la capacidad del modelo para 

diferenciar patrones anatómicos sutiles. 

 

4.2. Desempeño del modelo CNN 

El modelo fue entrenado y su evaluación se empleó 

sobre un conjunto de compuesto por 30 muestras. 

Los resultados obtenidos por la red convolucional 

son los siguientes: 

 
Precisión global (Accuracy): 0.7000 

Precisión clase CHD: 0.8000 

Recall clase CHD: 0.8333 

F1-score clase CHD: 0.8163 

 

La Fig. 3 muestra la matriz de confusión del modelo 

CNN. Se observa que la red neuronal identificó 

correctamente 20 casos enfermos (CHD) y 1 caso 

sano (No CHD). Sin embargo, cometió 5 falsos 

positivos, es decir, clasificó incorrectamente 

pacientes sanos como enfermos, y 4 falsos 

negativos, correspondientes a pacientes enfermos 

que fueron clasificados como sanos. 
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Este comportamiento refleja que el modelo presenta 

un ligero sesgo hacia la clase positiva, privilegiando 

la detección de casos patológicos por encima de la 

correcta identificación de sujetos sanos. Tal 

tendencia puede atribuirse al desbalance en el 

conjunto de datos (mayor cantidad de imágenes de 

pacientes enfermos) o a una limitada capacidad de 

generalización del modelo para aprender patrones 

representativos del miocardio normal. 

 

 
Fig. 3. Matriz de confusión del modelo CNN. 

 

La curva ROC del modelo, la cual presenta un AUC 

de 0.4167, indicando un poder discriminativo 

inferior al límite del azar, lo cual no es correcto en 

el área de la salud. A pesar de que la red logró una 

sensibilidad aceptable, el bajo AUC y la incapacidad 

de clasificar correctamente los casos negativos 

limitan su utilidad diagnóstica. 

 

A pesar de su elevada sensibilidad para detectar 

casos de CHD, el modelo CNN presentó 

deficiencias significativas en la identificación de 

pacientes sanos, lo cual podría resultar en un número 

elevado de falsos positivos en un escenario clínico. 

Este comportamiento puede estar relacionado con el 

desequilibrio del conjunto de datos y la posible 

necesidad de ajustes adicionales en la arquitectura o 

en los métodos de regularización. En futuras 

versiones del modelo se recomienda aplicar técnicas 

como focal loss, class weighting o aumento 

específico para la clase minoritaria. 

 

4.3. Desempeño del modelo YOLOv8 

 

El desempeño alcanzado por este modelo fue el 

siguiente: 

 
Precisión global (Accuracy): 0.8000 

Precisión (Precision): 0.8000 

Sensibilidad (Recall): 1.000 

F1-score: 0.8900 

 

La Fig. 4 muestra la curva ROC obtenida a partir de 

las probabilidades de clasificación del modelo 

YOLOv8 para la clase positiva (enfermo). 

El área bajo la curva (AUC) fue de 0.83, lo que 

refleja una capacidad de discriminación buena, 

aunque no sobresaliente. 

La curva presenta una forma ascendente y se 

aproxima parcialmente al vértice superior izquierdo, 

indicando que el modelo logra una alta tasa de 

verdaderos positivos con un número moderado de 

falsos positivos. 

 

Este resultado confirma que YOLOv8 es capaz de 

distinguir con eficacia entre sujetos sanos y 

enfermos, aunque su desempeño podría mejorar 

mediante una calibración más precisa del umbral de 

decisión o un mayor equilibrio entre clases. 

 

 
Fig. 4. Curva ROC del modelo YOLOv8. 

 

El modelo mostró un rendimiento superior frente a 

los otros enfoques evaluados, tanto en términos de 

precisión como de equilibrio entre clases. Su 

capacidad para generalizar correctamente sobre un 

conjunto de validación diverso, sumado a su baja 

tasa de error y su alta puntuación AUC, lo posiciona 

como una alternativa altamente viable para la 

detección automatizada de enfermedades cardíacas 

congénitas a partir de imágenes médicas. La 

estabilidad del modelo también sugiere un 

aprendizaje efectivo de patrones discriminativos sin 

sobreajuste, incluso en un entorno clínico con 

recursos moderados. 

 

4.4. Explicabilidad de los modelos 

 

4.4.1. Random Forest 

 

Con el propósito de comprender cómo el modelo 

toma sus decisiones y validar la relevancia 

fisiológica de las características utilizadas, se 
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implementaron dos enfoques complementarios de 

explicabilidad global y local: 

 

SHAP (SHapley Additive Explanations), basado en 

teoría de juegos cooperativos. Permutation 

Importance, que evalúa la variación del desempeño 

del modelo al alterar aleatoriamente cada variable. 

Ambos métodos se aplicaron sobre el conjunto de 

validación, empleando los seis descriptores 

radiómicos obtenidos a partir de la matriz de co-

ocurrencia de niveles de gris (GLCM): 

Homogeneity, Energy, ASM (Angular Second 

Moment), Contrast, Dissimilarity y Correlation. 

 

 
Fig. 5. Impacto del modelo en las salidas 

 

El análisis de valores absolutos medios de SHAP 

(ver Fig. 5) permitió identificar que las variables con 

mayor impacto en la predicción fueron: 

 

• GLCM_Homogeneity (0.0449), 

• GLCM_Energy (0.0442), 

• GLCM_ASM (0.0436). 

 

Estas tres características se asocian con la 

uniformidad del tejido miocárdico. Los pacientes 

con valores altos de homogeneidad y energía 

tendieron a clasificarse como sanos, mientras que 

texturas más heterogéneas (baja homogeneidad, alto 

contraste) se vincularon a la clase enfermo. Las 

variables Contrast, Dissimilarity y Correlation 

tuvieron menor contribución, aunque su efecto 

combinado ayudó a distinguir alteraciones 

estructurales leves. La representación de SHAP 

individual mostró una tendencia coherente: los 

valores negativos de homogeneidad disminuyen la 

probabilidad de ser sano, y los positivos la 

aumentan, lo que confirma que el modelo 

internalizó un patrón clínicamente consistente. 

 
Fig. 6. Importancia de la permutación. 

En cuanto a importancia de permutación, la Fig. 6 

muestra la importancia promedio y la desviación 

estándar obtenidas mediante el método de 

permutación. Los resultados coincidieron 

parcialmente con SHAP: homogeneidad mantuvo el 

primer lugar en relevancia (0.0333), seguida de 

Correlación (0.0122) y Contraste (0.0033). 

No obstante, variables como ASM y Energy 

mostraron ligeras variaciones negativas, 

evidenciando cierta redundancia entre ellas, lo cual 

es esperable dado que ambas reflejan uniformidad y 

textura suave. La concordancia entre SHAP y 

Permutación, sugieren una consistencia interna alta 

en el modelo, la dominancia de descriptores de 

uniformidad implica que el modelo asocia 

dispersión de intensidades con patología, coherente 

con los cambios estructurales típicos de la 

miocardiopatía (hipertrofia, fibrosis o 

remodelación). Para finalizar, dado que Ramdon 

Forest no opera directamente sobre la imagen sino 

sobre vectores de características globales, su 

interpretabilidad espacial es limitada; sin embargo, 

ofrece una explicabilidad conceptual clara basada en 

propiedades estadísticas del tejido. 

4.4.2. CNN 

 

El modelo de red neuronal convolucional (CNN) fue 

analizado mediante tres técnicas complementarias 

de explicabilidad visual: 

- Grad-CAM (Gradient-weighted Class 

Activation Mapping) 

- Saliency Maps 

- Integrated Gradients (IG). 

Estas herramientas permiten identificar las regiones 

de la imagen que más influyen en la predicción final, 

aportando una interpretación espacial directa sobre 

la atención del modelo. 
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La técnica Grad-CAM (ver Fig. 7) generó mapas de 

calor que indican qué regiones del corte axial 

activaron más intensamente las capas 

convolucionales al clasificar un paciente como 

enfermo. 

 

 
Fig. 7. Mapas de calor Grad-CAM 

 

En la mayoría de los casos positivos, las zonas rojas 

y amarillas se concentraron en el ventrículo 

izquierdo y el septo interventricular, áreas 

comúnmente afectadas en cardiopatías hipertróficas 

y dilatadas. En pacientes sanos, las activaciones 

fueron más uniformes y dispersas, lo que refleja 

menor atención del modelo a regiones específicas. 

 

En la Fig. 8, se aprecia que se calcularon los 

gradientes de la salida respecto a cada píxel de 

entrada, evidenciando qué zonas provocan los 

mayores cambios en la probabilidad de 

clasificación. 

 

 
Fig. 8. Mapas de Saliencia 

 

Estas visualizaciones resaltaron contornos del 

corazón y bordes ventriculares, indicando que el 

modelo basó sus decisiones en la forma y límites del 

miocardio. El patrón observado confirma que la 

CNN aprende rasgos de textura y geometría, pero no 

logra discriminar completamente entre sanos y 

enfermos, ya que muchos bordes aparecen 

destacados incluso en cortes sin patología. 

 

 
Fig. 9. Gradientes integrados 

La técnica gradientes integrados como se aprecia en 

la Fig. 9, ofreció una perspectiva más estable, 

reduciendo el ruido característico de los gradientes 

puros. 

 

Los resultados mostraron concentraciones de 

intensidad moderada sobre el miocardio medio-

septal y las paredes ventriculares, lo cual coincide 

con las zonas que el Grad-CAM identificó como 

más relevantes. Esta coincidencia entre métodos 

refuerza la confianza en que la CNN sí está 

aprendiendo patrones anatómicamente plausibles, 

aunque su precisión global sea limitada. 

 

4.4.3. YOLOv8 

 

Este modelo, originalmente diseñado para detección 

de objetos, fue adaptado a la tarea de clasificación 

binaria de cardiopatías. Debido a su naturaleza 

completamente convolucional y a la presencia de 

capas de feature pyramids y self-attention, su 

comportamiento interno resulta menos intuitivo que 

el de una CNN tradicional. Por tanto, se aplicaron 

dos métodos de explicabilidad espacial: Grad-CAM 

y Sensibilidad a la oclusión, con el objetivo de 

analizar las regiones anatómicas que contribuyen a 

la predicción final y validar la coherencia de sus 

activaciones. Los mapas Grad-CAM generados 

sobre los cortes axiales más representativos de cada 

paciente (ver Fig. 10) evidenciaron activaciones 

intensas en las cavidades ventriculares y el septo 

interventricular en los casos clasificados como 

enfermos. 

 

 
Fig. 10. Mapas Grad-CAM (pac6 y pac7) 
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En particular, los pacientes pac6 y pac7 mostraron 

zonas calientes (rojas y amarillas) concentradas en 

el ventrículo izquierdo y en la pared septal, 

coherentes con la localización típica de alteraciones 

en miocardiopatías dilatadas o hipertróficas. 

 

En el caso del paciente pac27 (ver Fig. 11), el mapa 

Grad-CAM presentó activaciones ligeramente 

desplazadas hacia áreas periféricas, reflejando una 

predicción con confianza moderada (probabilidad 

de 0.61). 

 

 
Fig. 11. Mapas Grad-CAM(pac27) 

 

Esto sugiere que, aunque el modelo reconoce 

señales patológicas, su atención puede dispersarse 

en casos con texturas cardíacas menos pronunciadas 

o con bajo contraste. En pacientes sanos, las 

activaciones Grad-CAM se distribuyeron de forma 

difusa, sin concentraciones claras, lo cual coincide 

con la ausencia de patrones estructurales anómalos. 
 

Para complementar el análisis, se aplicó el método 

de Sensibilidad a la oclusión (ver Fig. 12), el cual 

mide la disminución de probabilidad al enmascarar 

parches locales de la imagen. 

 

 
Fig. 12. Occlusion Sensitivity (pac6, pac7) 

 

Los resultados mostraron que las regiones cuya 

oclusión provocó mayor caída de probabilidad 

(zonas amarillas y rojas) coincidieron con las 

mismas áreas destacadas por Grad-CAM: paredes 

ventriculares y septo interventricular. 

 

En los pacientes enfermos, la oclusión del ventrículo 

izquierdo redujo la probabilidad de la clase 

“enfermo” en más del 40%, confirmando que estas 

regiones son críticamente determinantes para la 

decisión del modelo, en cambio, en los pacientes 

sanos, la oclusión no produjo cambios significativos 

en la salida, lo que valida la especificidad de la 

atención. 

 

5. CONCLUSIÓN 

 

Este estudio presentó una comparación sistemática 

entre tres enfoques representativos de la inteligencia 

artificial aplicados a la detección de cardiopatías 

mediante imágenes de resonancia magnética 

cardíaca: aprendizaje computacional clásico 

(Random Forest), redes neuronales convolucionales 

(CNN) y modelos de clasificación optimizados 

(YOLOv8). 

 

La metodología abarcó desde el preprocesamiento 

de imágenes y la extracción de características hasta 

la evaluación del rendimiento con métricas 

estandarizadas (accuracy, precision, recall, F1-score 

y AUC), complementada con un análisis de 

explicabilidad (XAI) que permitió interpretar las 

decisiones de cada modelo. 

 

Los resultados mostraron que YOLOv8 obtuvo el 

mejor desempeño global, con accuracy y precision 

del 80%, F1-score de 0.89 y un AUC de 0.83, 

reflejando una buena capacidad de discriminación 

entre pacientes sanos y enfermos, su arquitectura 

permitió conservar información espacial relevante y 

detectar patrones estructurales complejos en el 

miocardio, demostrando su potencial para tareas 

médicas críticas. Por otro lado, el Random Forest 

también logró un rendimiento competitivo 

(accuracy = 0.80; recall = 1.00), apoyándose en 

descriptores texturales derivados de matrices 

GLCM; mientras que la CNN obtuvo un desempeño 

inferior (AUC = 0.4167), mostrando dificultad para 

generalizar correctamente la clase negativa debido 

al desbalance de datos. 

 

Desde la perspectiva de la inteligencia artificial 

explicable, los tres enfoques evidenciaron 

coherencia fisiológica en sus decisiones. 

El Random Forest basó su clasificación en 

propiedades texturales homogéneas del tejido 

miocárdico; la CNN focalizó parcialmente su 

atención en el ventrículo izquierdo y el septo 

interventricular; y YOLOv8 concentró sus 

activaciones en regiones anatómicamente 

relevantes, confirmando su capacidad de 

representación espacial. Estos hallazgos subrayan 

que la explicabilidad no solo aporta transparencia, 

sino también una herramienta de validación clínica 

complementaria al rendimiento cuantitativo. 
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En el ámbito clínico, la alta sensibilidad observada, 

especialmente en YOLOv8 y Random Forest, 

resulta alentadora para el desarrollo de sistemas de 

apoyo al diagnóstico; sin embargo, la presencia de 

falsos positivos en los modelos basados en 

aprendizaje profundo pone de manifiesto la 

necesidad de recalibrar umbrales de decisión, 

mejorar el balance de clases e incorporar 

validaciones cruzadas con especialistas. 

 

Finalmente, en este trabajo se demuestra que la 

inteligencia artificial es una vía viable y robusta para 

el diagnóstico asistido de cardiopatías estructurales. 

Modelos como YOLOv8 combinan rendimiento y 

explicabilidad, ofreciendo una base sólida para su 

implementación en flujos de trabajo clínicos reales. 

Futuras investigaciones deberán centrarse en 

aumentar la diversidad de los datos, optimizar la 

interpretabilidad y evaluar la reproducibilidad 

multicéntrica de estos modelos, consolidando su 

papel como herramientas de soporte clínico 

confiables y transparentes. 
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