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Abstract: In this article, the implementation of the flow control technique with artificial 

intelligence (DDPG) is presented in a fully instrumented functional prototype with industrial 

sensors and actuators, simulating flow recirculation through three tanks. The methodology used 

for process identification (first-order plus dead time model (FOPDT)) through ClientServer OPC 

communication with Matlab® is presented. The design of the reinforcement learning algorithm 

and its adaptation in the learning environment with experimental data are also presented. The 

simulation results were satisfactory compared to traditional control techniques, demonstrating 

robustness against forced disturbances. Finally, the implementation of reinforced learning 

control integrating TIA Portal and Matlab (through a PLC-S7-1500 controller) was evaluated 

with a reference of 600 l/h, achieving 0% overshoot with a settling time of 22s. Compared to 

other control systems, a better response in settling time and overshoot-free control was observed. 

Finally, perturbations were applied to the system, observing their effect in relation to the flow. 

 

Keywords: reinforcement learning, efficiency, artificial intelligence, industrial processes. 

 

Resumen: En este artículo se presenta la implementación de la técnica de control de caudal con 

inteligencia artificial (DDPG) en un prototipo funcional completamente instrumentado con 

sensores y actuadores industriales, simulando la recirculación de caudal a través de tres tanques. 

Se presenta la metodología utilizada para la identificación del proceso (modelo de primer orden 

más tiempo muerto (FOPDT)) mediante comunicación OPC Cliente Servidor con Matlab®. 

También se presenta el diseño del algoritmo de aprendizaje por refuerzo y su adaptación en el 

entorno de aprendizaje con datos experimentales. Los resultados de la simulación fueron 

satisfactorios en comparación con las técnicas de control tradicionales, demostrando robustez 

frente a perturbaciones forzadas. Finalmente, se evaluó la implementación del control de 

aprendizaje reforzado integrando TIA Portal y Matlab (a través de un controlador PLC-S7-1500) 

con una referencia de 600 l/h, logrando un sobre impulso del 0% con un tiempo de asentamiento 

de 22s. Comparado con otros sistemas de control, se observó una mejor respuesta en el tiempo 

de asentamiento y un control libre de sobre impulso. Finalmente, se aplicaron perturbaciones al 

sistema, observando su efecto con relación al flujo. 
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1. INTRODUCTION 

 

Reinforcement learning is a technique in which an 

agent learns to perform a task through repeated trial-

and-error interactions within a dynamic 

environment. The core of this technique involves 

incorporating behaviors by interacting with the 

environment, without explicitly programming the 

solution of the problem [1]. Based on this concept, 

multiple uses of these learning environments have 

been generated, such as game playing or controls 

development for robotics [2], and even energy 

optimization in buildings [3]. 

 

In general, there are several techniques of artificial 

intelligence that are responsible for solving complex 

tasks based on unexplored and high-dimensional 

sensory data, making it a powerful tool for the 

development of complex tasks. Unlike other 

branches of AI, reinforcement learning receives 

delayed feedback, where the agent receives 

feedback after generating a decision and prediction 

[3]. Reinforcement learning has emerged as a very 

powerful approach for automated decision making 

in multiple control systems fields [4], representing a 

far-reaching and promising methodology. 

 

In the field of process control, [5] presents a 

comparison between two Proportional-Integral (PI) 

controller tuning techniques: the traditional Zero-

Pole cancellation method and an innovative strategy 

based on reinforcement learning for adaptively 

adjusting a PI controller in a refrigeration system 

(HVAC). The results demonstrated that the 

innovative method enables energy consumption 

optimization and reduces operating costs. 

 

To address this issue more efficiently, new 

techniques are being explored, including those that 

leverage Artificial Intelligence (AI) and 

optimization. These strategies adopt dynamic and 

continuous approaches using tools such as neural 

networks [6]-[10], genetic algorithms [11]-[13], 

fuzzy logic [14][15], and other optimization 

methods [16][17]. The main goal of applying AI-

based tuning techniques is to automate and refine 

the characteristic parameters of a PID controller, 

thereby achieving better performance than 

traditional methods. 

 

While PID control remains widely used due to its 

simplicity, approaches such as reinforcement 

learning are not restricted to a single linear model of 

the system. These advanced techniques can be 

applied to more complex scenarios, as demonstrated 

by [18]. Furthermore, such strategies allow for the 

incorporation of user preferences into decision-

making [19], energy optimization [20], and fault 

detection [21]. 

 

 

 
Fig. 1. Diagram P&ID Training unit, [22]. 
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This article focuses on the development of a 

reinforcement learning-based controller for an 

industrial process training plant, using a learning 

environment with a mathematical model of the 

system. The objective is to maintain a constant flow 

in a system of three interconnected tanks, by 

adjusting the frequencies of a hydraulically 

controlled pump through a frequency converter and 

a Siemens S7-1500 PLC [22]. 

 

The type of reinforcement learning applied is DDPG 

(Deep Deterministic Policy Gradient), which is a 

critic-actor algorithm with a policy that maximizes 

long-term reward [23]. The following steps are 

performed during the agent’s training stage: 

 

In equation (1), the parameters ϕ are initialized, 

from the critic the observation 𝑆 is taken, and 

perform the action 𝐴 . 

 

𝑄(𝑆, 𝐴; ϕ)   (1) 

 

Initially, the actor network (2) takes the observation 

𝑆 and returns the action that maximizes the long-

term reward 

 

𝜋 (𝑆; 𝜙)  (2) 

 

For the current observation 𝑆 (3), the action 𝐴 is 

selected, where 𝑁 represents the modeled noise 

 

𝐴 = 𝜋(𝑆; 𝜙) + 𝑁  (3) 

 

The action 𝐴 is executed, and the reward R and the 

next observation S′ is calculated 

 

The information (𝑆, 𝐴, 𝑅, 𝑆´) is stored in the 

experience buffer. 

 

A mini-batch of experiences M is randomly 

generated from the experience buffer 

(𝑆𝑖, 𝐴𝑖, 𝑅𝑖, 𝑆´) 
 

If 𝑆𝑖 is a terminal state, the target value 𝑦𝑖  for the 

value function is set to 𝑅𝑖; otherwise, it is set 

according to equation (4) 

 

𝑦𝑖 = 𝑅𝑖 + 𝛾𝑄𝑡 + (𝑆𝑖´, 𝜋𝑡(𝑆𝑖´; 𝜃𝑡); 𝜙𝑡 (4) 

 

The goal of the value function is to sum the 

immediate reward 𝑅𝑖 with the discounted future 

reward. To calculate the cumulative reward, the 

agent first computes the next action and the next 

observation 𝑆′𝑖from the experience samples using 

the target actor. The agent estimates the cumulative 

reward using the next action for the target critic. 

The critic’s parameters are updated by minimizing 

the loss 𝐿 over all experience samples, equation (5). 

 

𝐿 =  
1

2M
∑ (𝑦𝑖 − 𝑄(𝑆𝑖, 𝐴𝑖; )𝜙)2M

i=1  (5) 

 

The actor’s parameters are updated using the policy 

gradient, aiming to maximize the expected 

discounted reward, equation (6). 

 

∇θ𝐽 ≈
1

𝑀
∑ 𝐺𝑎𝑖 + 𝐺𝑎𝑖

𝑀
𝑖=1     (6) 

𝐺𝑎𝑖 = ∇𝐴𝑄′(𝑆𝑖, 𝐴; 𝜙) where 𝐴 = 𝜋(𝑆𝑖; 𝜃)  
𝐺𝜋𝑖 = ∇𝜃𝜋(𝑆𝑖; 𝜃) 

 

To update the parameter values of the critic and 

actor, smoothing factors τ are used (7). 

 
𝜙𝑡 = τ𝜙 + (1 − τ)𝜙𝑡  (𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑟𝑖𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (7) 
𝜙𝑡 = τ𝜙 + (1 − τ)𝜃𝑡 (𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑐𝑡𝑜𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

 

 

2. WORK METODOLOGY 

 

2.1 OPC communication 

 

Through the OPC architecture and the 

KepServerEX server, client-server communication 

was established between the Siemens S7-1500 PLC 

and the MATLAB® platform, which allowed the 

acquisition, monitoring and control of process 

variables in real time, as shown in Figure 2. This 

integration facilitated the recording of the dynamic 

behavior of the flow rate with variations in the pump 

operating frequency. Based on the experimental 

data obtained, the dynamic model of the plant was 

identified, which was represented by a first-order 

model with dead time (FOPDT), commonly used in 

industrial control systems due to its simplicity and 

ability to approximate real processes. 

 

 
Fig. 2. Connection diagram with KepServer 

 

2.2 Mathematical Model 

 

Using the response shown in Figure 3, data were 

obtained from the step response (Order to the drive: 

46.875 Hz) and the response curve, Figure 4, to 

identify the mathematical model proposed by Alfaro 

[24]. 
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Fig. 3. Process curves diagram 

 

The obtained transfer function is presented in 

equation (8). 

 

𝐺𝑝1(𝑆) =
0.02575𝑒−1.6𝑠

5.17𝑠+1
   (8) 

 

Figure 4 compares the plant’s time response with the 

transfer function given in equation (8). The average 

error of the models obtained was 0.30%. 

 

 
Fig. 4. Physical model vs. mathematical mode 

 

 

 

2.3 Environment Reward Table 

 

The ranges and rewards provided by the 

environment are presented in Table I. The variation 

range of the flow through the tanks, 200-700 l/h, was 

used as the termination condition for the plant. 

 

2.4 General Diagram of the Learning 

Environment 

 

Simulink® was used to represent the model through 

block diagrams, as shown in Figure 5. The integrator 

H represents the initial condition of the hydraulic 

pump frequency. 

 

2.5 General Diagram of the Learning 

Environment 

 

The learning environment was constructed using an 

RL agent, implementing the reward table from 

Table 1 (calculated reward), the employed 

environment (mathematical model) and the 

termination conditions such as the physical limits of 

the plant and the target flow reference value (See 

Figure 6). 

 
Table 1: environment reward table 

 

Reward State 

+10 For maintaining the value within a variation less 

than 1 l/h 
-1 For maintaining the flow value within the 

operational limits 

-650 For allowing the flow to exceed the limits 

 

 

 

 
Fig. 5. Block diagram of the mathematical model 
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Fig. 6. Block diagram of the learning environment 

 

 

2.6 Learning Environment Programming 

 

The Algorithm 1 and Table 2 summarizes the key 

parameters used to configure the learning 

environment. Based on these, the learning model 

was developed.  

 

The training results are presented graphically in 

Figure 7, with a total of 880 training epochs, a 

reward exceeding 600, and a training time of 2 hours 

and 12 minutes. 

 

 
 

Table 2: learning environment characteristics 

 

Criterion Value 

Approximators used by the policy Critic, Actor 
Sampling time 1s 

Simulation time 200s 
Number of neurons in critic 25 

Number of neurons in actor 25 

Type of agent used for learning Deep Deterministic 
Policy Gradient 

(DDPG) 

Objective factor 1.00E-03 

Critic learning factor 1.00E-03 

Actor learning factor 1.00E-04 
Gradient threshold (Critic, Actor) 1.0 

Agent experience buffer 1.00E+06 

Agent batch size 6.40 

 

 
Fig. 7. Reward diagram by episode (Episode reward in blue ans 

Value of the Target Critc in yellow) 

 

 

3. IMPLEMENTATION OF THE  

PROTOTYPE 

 

The communication between the trained agent and 

the physical plant (Siemens S7-1500 PLC) was 

established through KepServer (Figure 8). 

 

3.1 Reinforcement Learning Controller Analysis 

 

The controller response was analyzed for two 

reference points (350 and 600 l/h), and its behavior 

was evaluated under artificially forced disturbances 
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(opening and closing of the plant's solenoid valves), 

generating abrupt variations in the system flow rate. 

This was done to assess the controller's robustness 

to unscheduled changes in operating conditions. 

Satisfactory responses were obtained, as shown in 

Figure 9. 

 

 

 
Fig. 8. OPC connection block diagram 

 

 

 
Fig. 9. Plant response to the proposed control system with two 

references values 

 

From Figure 9, the settling time and overshoot were 

calculated for a reference of 600 l/h, resulting in 22 

seconds and 0% respectively. For a reference of 350 

l/h, a settling time of 19 seconds and 0% overshoot 

were obtained. 

 

3.2 Comparison with other control techniques 

 

Reinforcement learning control was compared with 

other control techniques under the same operating 

conditions (PI control, cascade control, Smith 

predictor) in Table 3, using the same reference value 

of 600 l/h. 

 

 

Table 3: comparison table of different controllers in the 

physical plant 

 

Control Structure Settling 

Time 

Overshoot 

PI Control 35s 15% 

Cascade Control 32s 0% 
Smith Predictor 25s 5% 

Reinforcement Learning 22s 0% 

 

From Figure 3, it can be observed that reinforcement 

learning control does not exhibit overshoot in the 

rising edge and small oscillation without overshoot 

in the falling edge, comparing with classical control 

methods. The Smith predictor shows a 5% 

overshoot with a settling time of 25 seconds, the PI 

control has a higher overshoot of 15% with a settling 

time of 35 seconds, and the cascade control exhibits 

a similar behavior to reinforcement learning, with 

no overshoot but a longer settling time by 10 

seconds. Based on this analysis, it was validated that 

reinforcement learning control generates a better 

response in terms of response speed and overshoot 

compared to classical controllers. 

 

4. CONCLUSIONS 

 

The implementation of the reinforcement learning 

controller showed satisfactory results evaluated in a 

functional prototype. Additionally, it demonstrated 

robustness to forced disturbances while maintaining 

a constant reference point with a steady state error 

of 0.2%. 
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In comparison to other classical control systems, the 

reinforcement learning controller exhibited a shorter 

settling time of 22 seconds and no overshoot. It 

resembled the behavior of cascade control but 

improving the settling time. 
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