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Abstract: Visual impairment limits students’ access to object‑oriented modeling 

environments that rely on graphical interfaces. Advances in Text‑to‑Speech (TTS) and 

Speech‑to‑Text (STT) technologies make it possible to consider mechanisms to compensate 

for this barrier, yet their adoption in educational platforms lacks evidence‑based guidelines. 

This work aims to design, implement, and validate a voice‑controlled UML modeling 

system that enables visually impaired students to create, edit, and query class and use‑case 

diagrams. A four‑phase methodology was followed: (i) requirements elicitation; (ii) 

modular architectural design with grammatical validation and the use of large language 

models (LLMs); (iii) implementation in Python 3.11, FastAPI, and cloud‑based STT/TTS 

services; and (iv) technical evaluation using recognition accuracy, latency, and task‑time 

metrics. The prototype executed 20 critical commands with a recognition accuracy of 97 % 

and maintained full syntactic coherence in the UML models generated. The average times 

to complete creation, editing, and navigation tasks were 4.23 s, 6.78 s, and 5.24 s, 

respectively. The average TTS latency (1,468 ms) exceeded the 500 ms target, identifying 

the NLP module as the main bottleneck. The system demonstrates technical feasibility and 

adheres to the defined accessibility guidelines (WCAG 2.2). Future improvements will 

focus on reducing TTS latency, expanding the command repertoire, and conducting 

large‑scale usability evaluations (SUS). 

 
Keywords: accessibility, speech synthesis, UML modeling. 

 

Resumen: La discapacidad visual limita el acceso de los estudiantes a entornos de 

modelado orientado a objetos que dependen de interfaces gráficas. El avance en las 

tecnologías Text‑to‑Speech (TTS) y Speech‑to‑Text (STT) permite pensar en mecanismos 

para compensar esta barrera, pero su adopción en plataformas educativas carece de 

directrices basadas en evidencia. Este trabajo se orienta hacia diseñar, implementar y 

validar un sistema de modelado UML controlado por voz que permita a estudiantes con 
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discapacidad visual crear, editar y consultar diagramas de clases y de casos de uso. Se siguió 

una metodología de cuatro fases: (i) levantamiento de requisitos; (ii) diseño arquitectónico 

modular con validación gramatical y uso de LLMs; (iii) implementación en Python 3.11, 

FastAPI y servicios de STT/TTS en la nube; (iv) evaluación técnica empleando métricas de 

precisión de reconocimiento, latencia y tiempos de tarea. El prototipo ejecutó 20 comandos 

críticos con una precisión de reconocimiento del 97 % y mantuvo coherencia sintáctica total 

en los modelos UML generados. El tiempo medio para completar tareas de creación, 

edición y navegación fue de 4,23 s, 6,78 s y 5,24 s, respectivamente. La latencia promedio 

de TTS (1 468 ms) superó el objetivo de 500 ms, identificando al módulo PLN como 

principal cuello de botella. El sistema demuestra viabilidad técnica y sigue lineamientos de 

accesibilidad definidos (WCAG 2.2). Las mejoras futuras se centrarán en reducir la latencia 

TTS, ampliar el repertorio de comandos y realizar evaluaciones de usabilidad (SUS) a gran 

escala. 

 

Palabras clave: accesibilidad, síntesis de voz, modelado UML. 
 

 

 
1. INTRODUCTION 

 

Visual impairment represents a significant barrier to 

educational inclusion and independent learning 

today. According to the World Health Organization, 

more than one billion people have some degree of 

visual deficiency [1], which restricts their access to 

printed texts, graphical interfaces, and conventional 

educational environments. 

 

In this context, assistive auditory technologies, 

particularly text-to-speech (TTS) synthesis, emerge 

as a key resource for converting textual content into 

audible information, enhancing cognitive 

accessibility and the autonomy of students with 

visual impairments. The growing adoption of online 

education platforms and remote learning 

environments increases the need for interactive 

vocal feedback mechanisms—such as reading texts, 

quizzes, and exams—to ensure equal learning 

opportunities.  

 

Although voice feedback is well established in 

navigation applications for independent mobility, its 

integration into educational platforms requires a 

thorough analysis of interaction dynamics, 

multisensory synergy, and the measurement of 

pedagogical outcomes. Additionally, regulatory 

frameworks such as the Web Content Accessibility 

Guidelines (WCAG) [2],  demand not only the 

incorporation of TTS functions but also their 

coherence in pedagogical workflows and interactive 

interfaces; however, they lack evidence-based 

guidelines on their effective application. 

 

Furthermore, recent research on interactive 

technologies for users with visual disabilities shows 

valuable technical and interaction advancements, 

but it falls short in establishing a comprehensive 

approach that articulates designs, architectures, and 

evaluation metrics.  

 

In some specific contexts, significant developments 

in this direction include: in mobility, wearable 

devices combine auditory feedback with ultrasonic 

and infrared sensors, yielding good results but with 

weaknesses in studies on their safety in real-world 

environments [1].  

 

In the field of remote music education, Networked 

Music Performance platforms prioritize low latency 

and high sound fidelity for students with multiple 

disabilities, but omit TTS schemes that facilitate 

real-time textual feedback [3]. Similarly, in the 

learning of virtual textures, vibrotactile stimuli and 

voice synthesis have been integrated for material 

classification, showing potential for non-visual 

recognition but limiting themselves to non-textual 

domains [4].  

 

Despite the aforementioned contributions, 

weaknesses still persist. There are no 

comprehensive comparisons of usability criteria nor 

evaluations of effectiveness in learning 

performance. Without a comparative framework, 

developers and educators lack objective criteria to 

select and adjust TTS technologies that optimize 

both user experience and academic outcomes [5].  

 

In this context, the present work proposes a voice-

activated UML modeling system, specifically 

designed for students with visual impairments in 

software engineering education environments. 

Unlike general approaches based solely on content 

reading, this proposal focuses on bidirectional 

interaction through verbal commands that allow the 
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creation, editing, and consultation of UML diagram 

elements. The initiative responds to the need to 

integrate TTS and STT technologies in learning 

environments, where vocal feedback not only 

converts text to audio but actively participates in 

navigation and the construction of technical 

knowledge. To this end, a methodology was 

developed, structured in four phases, ranging from 

requirement gathering to technical validation. 

 

This document is structured as follows: Section 2 

describes work in three different areas. Section 3 

outlines the methodology used for prototype 

development. Sections 4, 5, and 6 present the 

results, discussion, and conclusions, respectively. 

 

2. TECHNOLOGICAL BACKGROUND 

 

Recent developments in assistive technologies for 

people with visual impairments are grouped into 

three complementary areas. 

 

2.1 Non-Educational Assistive Technologies 

 

Portable orientation and mobility devices for people 

with low vision combine readings from RGB-

D/stereo cameras and ultrasound, providing 

auditory or haptic feedback with high precision, but 

are weak in standardized safety metrics and 

validations in dynamic environments [1].  

 

Other works explore vibrotactile displays where a 

Convolutional Neural Network (CNN) smooths 

contours and translates them into directional 

patterns that accelerate exploration [6], and 16 × 16 

MEMS Braille displays coupled with haptic-

auditory environments, which, using Seq2Seq + 

WaveNet models, recognize characters with 97%  

accuracy in 0.5 seconds [7].  

 

Portable robotic guides trained using Human Path 

Prediction Network (HPPN) for trajectory 

estimation, employing a Covariance Matrix 

Adaptation Evolution Strategy (CMA-ES), achieve 

reliable trajectories with 1,507 real episodes [8]. 

 

In space-touch interaction, MapIO [9] combines 

physical maps, voice synthesis, and LLM-based 

dialogue, improving System Usability Scale (SUS) 

response accuracy at the cost of higher inference 

latency. The Force-Feedback Tablet (20 × 20 cm, <1 

kg) uses a flat thumbstick to generate haptic effects 

(friction, edges, attraction) and reduces guided 

exploration time by 44%, with tests limited to the 

laboratory [10]. Finally, the VIS4ION system 

integrates 5G sub-6 GHz/mmWave edge computing 

to process high-resolution vision with global latency 

<100 ms, though energy consumption and 

ergonomics in real-world scenarios still need 

evaluation [11]. 

 

2.2 Educational Tactile and Haptic Interfaces 

 

Tactile graphics (TG) have been proposed and used, 

which translate images into relief through dynamic 

screens, vibrotactile actuators, and force feedback to 

represent mathematical structures and curves [12].  

 

In music, the challenges focus on latency. Low-

latency platforms like LOLA, JackTrip, SoundJack, 

JamKazam, SonoBus, or FarPla aim for very low 

latencies, similar to in-person ones (L ≤ 30 ms), but 

require dedicated hardware and still lack fully 

accessible interfaces [3]. Similarly, a multimodal 

haptic engine combining Informer and VGG16 

generates high-fidelity signals in 45–57 ms with 

93,33% accuracy by combining vibration and 

TTS [4]. 

 

In education and rehabilitation, the Hyperbraille 

display [13] (30 × 32 taxels, 5 Hz) reports 

improvements of 33–68% in shape recognition and 

41–61% in spatial memory. Tools like TAURIS [12] 

allow exploring pre-labeled graphs with contextual 

narration, surpassing traditional Braille and screen 

readers. A recent taxonomy maps solutions for 

access to and creation of mathematical content, 

highlighting the prevalence of TTS and standards 

such as MathML and EPUB3 Similarly, 

GraficiAccessibili [14] employs rhythmic 

sonification and vibration to represent functions on 

Android tablets, achieving correct identification 

after brief training, though limited to simple 

functions. Tangible interfaces, e.g., Tac Trace [15], 

use 3D tokens tracked by Trackmate vision to 

provide Arabic audio and teacher tracking. 

 

Finally, the application of asymmetric vibrations in 

white canes significantly reduces the Root Mean 

Square Error (RMSE) of sweep width during the 

touch technique learning process, enabling remote 

training without physical contact with the specialist 

 [16]. Finally, the application of asymmetric 

vibrations in white canes significantly reduces the 

RMSE of sweep width during the touch technique 

learning process, enabling remote training without 

physical contact with the specialist. 
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2.3 Multimodal Curriculum and Assessment 

Tools 

 

This line of research investigates instructional 

environments that synchronize audio, touch, and 

visualization with automated feedback, structured 

dialogue, and learning analytics. Their frameworks 

are typically based on Design-Based Research 

cycles and support TTS/STT and screen readers to 

maximize accessibility and personalization.  

In higher education, digital peer assessment (DPA) 

enables students to evaluate their peers' work while 

developing critical thinking skills [17].  

 

Accessible Design-Based Research frameworks 

integrate audio and haptics. For example, Eyeland 

achieved a 91.7% satisfaction rate and improved 

performance for both users with visual impairments 

and sighted individuals [18].  

 

A multilingual accessible writing system, based on 

Random Forest (f1 = 0.998) and a confidence 

threshold > 70%, demonstrated the feasibility of 

incorporating automatic and auditory assessment in 

APD [19]. A conversational graph exploration 

system, based on rule-guided dialogue to describe 

finite automata, outperformed the standard HTML 

representation in an A/B test (p < 0.05), while 

generic LLMs failed to maintain consistency [20].  

 

 

3. METHODOLOGY 

 

The research was structured in four sequential 

phases, each aimed at a specific objective (see Fig 

1):  

 

- In Phase 1, requirement gathering and the 

definition of use scenarios for students with 

visual impairments in Unified Modeling 

Language (UML) modeling activities were 

carried out. Based on interviews with 

instructors and the analysis of curricula, the 

priority UML artifacts and the workflows that 

the prototype should support were identified. 

- Phase 2 was dedicated to the architectural 

design of the system. A modular solution was 

defined, capable of receiving voice or text 

commands, processing their meaning through 

grammar rules and Natural Lenguage 

Processing (NLP) services, and managing the 

generation and persistence of diagrams in 

JSON format. Communication protocols, 

integration patterns, and accessibility criteria 

were established based on WCAG 2.2. 

- During Phase 3, the prototype was implemented 

and integrated using Python 3.11. FastAPI was 

employed for the web service, SQLite as a 

lightweight storage solution, and independent 

adapters for the STT, TTS, and LLM services. 

Continuous delivery and automated testing 

ensured code quality and the stability of the 

REST and WebSocket interfaces. 

- In Phase 4, the system evaluation with real 

users was programmed. A pilot study with 

students with visual impairments was designed 

to measure performance, command recognition 

accuracy, and usability using the SUS scale. 

The data obtained in this phase will guide the 

fine-tuning of the components and NLU 

prompts. 

 

 
 Fig. 1. Outline of the general methodology applied. 

Source: Own elaboration. 

 
 

4. RESULTS AND DISCUSSION 

 
4.1 Requirement Gathering and Scenario 

Definition 

 

During this phase, three semi-structured interviews 

were conducted with Software Engineering faculty 

members, complemented by the analysis of current 

curricula. From this analysis, it was concluded that, 

in undergraduate UML modeling courses, class 

diagrams and use case diagrams dominate the 

majority of practical activities. This prevalence is 

documented both in curriculum mapping studies for 

Software Engineering education [21], [22] and in 

the UML 2.5 specification itself [23], which 

recommends these artifacts to represent, 

respectively, the system's static structure and 

functional requirements. 

 

Two main usage scenarios were defined for these 

two types of diagrams: on one hand, the creation of 

a model from scratch during a practical session, and 

on the other hand, the incremental editing of an 

already existing diagram. These scenarios allowed 

for the definition of an initial set of 41 voice 

commands organized into nine categories —seven 

global (e.g., start, save, or undo), six for navigation 
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and querying, and 28 specifics for CRUD operations 

(Create, Read, Update, and Delete) on classes and 

use cases— (see Table 1). The repertoire includes 

instructions such as "create a customer class," "add 

a name attribute to Customer," or "link the User 

actor to the Register use case”. 

 

To validate the minimum viable product (MVP), 20 

of these commands (50% of the total) were 

implemented, focusing exclusively on operations 

related to class and use case diagrams. This 

approach ensures that the voice interface covers the 

critical tasks identified in the requirements 

gathering, in line with the recommendations of [24] 

regarding the prioritization of artifacts in 

educational environments. 

 

Based on response time and accuracy metrics 

reported in the literature, the objective was set for 

each command to be processed in less than 2.0 

seconds with a recognition accuracy rate of at least 

90% in voice recognition [25]. Similarly, it was 

defined that the system must maintain a consistent 

internal model, apply UML syntactic rules, and 

expose the diagram structure in JSON format for 

persistence and export. In general, the established 

specification (see Table 2): 

 

- Functional requirements: 

 

• Multimodal input (voice/text) 

• Processing time ≤ 2,0 s  

• Accuracy ≥ 90 % 

 

- Non-functional requirements: 

 

• End-to-end latency < 4 s on academic 

networks (< 10 Mbps) 

• Compliance with WCAG 2.2 (Web 

Content Accessibility Guidelines) 

• Accessible Rich Internet Applications 

(ARIA) navigation and labeling, ensuring 

traceability and compatibility with existing 

CASE tools. 
 

Table 1: Examples of CRUD commands from the prototype  
 

Commands Category Diagram 

Create a class <Name> 
CRUD 
class 

Classes 

Delete a class <Name> 
CRUD 

class 
Classes 

Rename class <Old> to <New> 
CRUD 

class 
Classes 

Add an attribute <Attribute> to <Class> 
CRUD 
class 

Classes 

Commands Category Diagram 

Add a method <Method> to <Class> 
CRUD 

class 
Classes 

Undo the last action Control Both 

Create a use case <Name> 
CRUD 

use case 
Use cases 

Link actor <Actor> with use case 
<Name> 

CRUD 
use case 

Use cases 

Save the diagram Global Both 

Close the diagram Global Both 

Source: Own elaboration 

 

 

Table 2: Defined requirements 

 

ID Requirement Type Target Value 

RF1 Interpret each 
command in less 

than 1.5 s 

Functional < 1,5 s 

RF2 Minimum accuracy 
in voice recognition 

Functional ≥ 92 % 

RF3 Consistent internal 

model with UML 
syntactic rules 

Functional Full 

compliance 

RF4 Expose diagram in 
JSON format for 

persistence/export 

Functional Valid JSON  

RNF
1 

End-to-end latency 
on academic 

networks (≤ 10 

Mbps) 

Non-
functional 

< 4 s 

RNF

2 

Compliance with 

WCAG 2.2 

(contrast, ARIA, 
keyboard 

navigation) 

Non-

functional 

Compliance 

with all 

criteria 

RNF
3 

Auditory feedback 
with explicit 

confirmations (TTS) 

Non-
functional 

Confirmation 
after each 

action 

Source: Own elaboration 

 

4.2 Architectural design 

 

The system was structured with a three-layer 

modular pattern — input, semantic processing, and 

generation — complemented by a presentation 

module (see Figure 2). Each layer groups 

components with well-defined responsibilities, 

facilitating traceability between requirements and 

design  [26]. 

 

In the input layer, a Voice Command Interpreter 

capable of receiving both audio signals (via the STT 

service) and written text. In line with the Web 

Speech API for modern browsers, this component 

converts dictation into raw text and queues the 

requests for subsequent analysis. To ensure 

accessibility, all control elements are labeled 

according to WCAG and ARIA specifications, and 

it includes keyboard navigation. 
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The semantic processing layer integrates two 

subcomponents. First, a syntax validator based on 

UML Grammar Rules (implemented in 

JSON Schema) discards malformed structures and, 

if necessary, invokes a disambiguation engine that 

generates clarification requests to the user. Second, 

an external Natural Language Processing (NLP) 

service — implemented through calls to a function 

calling translates the validated text into CRUD 

operations on UML elements. This hybrid approach, 

combining controlled grammars and language 

models, balances precision and flexibility [27]. 

 

In the generation and persistence layer resides the 

Diagram Orchestrator, responsible for coordinating 

changes to the internal model and exposing it in 

JSON format through a REST API. For real-time 

notifications (e.g., view updates), a WebSocket 

channel is enabled. Persistence uses SQLite as a 

lightweight storage solution, facilitating export and 

integration with CASE tools. 

 

Finally, the presentation module runs on a React 

client that consumes the REST API and the 

WebSocket channel to render SVG diagrams using 

PlantUML. This client plays TTS outputs to confirm 

each action and updates the interface without 

reloading, meeting the requirements for operability 

and robustness [28]. 

 

 
Fig. 2. Block diagram with three zones: (i) Accessible Input —the user dictates or writes a  UML command; (ii) Semantic Processing —the 

command passes through the interpreter, UML mapping and a query to validate LLM with UML rules; (iii) Model Generation/Management 

—internal state persisted, and audio/text responses returned to the user. 
Source: Own elaboration. 

 

4.3 Implementation and Integration 

 

The prototype was developed entirely in Python 

3.11 and was organized into modules that cover 

everything from audio capture to the generation of 

the final diagram. The application starts in the main 

script, where credentials and configuration 

parameters are read, and instances of the following 

are created: 

 

- LLMInterface, responsible for communication 

with the language model and managing the 

registration and invocation of tools through 

function calling. 

- InternalStateManager, which maintains the 

internal state of the diagrams, logs each 

operation as a tool, and executes CRUD and 

export functions. 

- AudioHandler, which delegates audio-to-text 

conversion and microphone audio capture to 

the STT_module and TTS_module. 

 

In the main loop, the system alternates between text 

and voice modes; in the case of voice, AudioHandler 

listens to the PCM signal and converts it to WAV 

using Pydub before invoking the Google recognition 

service. The resulting text is sent to LLMInterface, 

which generates a structured response according to 

the JSON schemas defined in function_schemas.py. 

This response invokes the corresponding tool in 

InternalStateManager, which updates the internal 

model stored in SQLite and returns a confirmation 

message. Then, AudioHandler synthesizes the 

response into audio and plays it back to the user. 

 

Persistence and interoperability with CASE tools 

are achieved by exporting the internal model to 

JSON, which transforms into a PlantUML script and 

processes via the command line to produce a 

diagram in PNG, SVG, or PDF format. 

Communication between back-end components is 

handled using FastAPI (REST endpoints for discrete 

operations) and a WebSocket server (for real-time 
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notifications), supported by HTTPX and AnyIO for 

asynchronous operation (see Table 3). 

 

To facilitate extensibility and maintainability, each 

LLM tool is associated with a JSON schema that 

validates input parameters before executing the 

function. This pattern ensures that only requests 

with the expected structure are executed, reducing 

deserialization errors and enhancing the robustness 

of the prototype (Newman, 2015). 

 
Table 3: Implementation of Components and Technologies Used 

 
Module Main Function Tecnología 

Audio Capture Listens to keyboard 

events and records raw 
audio 

pyaudio, 

keyboard 

Speech 

Recognition 
(STT) 

Converts audio to text 

using API 

speech_recog

nition, Pydub 

Text-to-Speech 

(TTS) 

Generates audio from 

text using Google 
Cloud TTS or gTTS 

google-cloud-

texttospeech, 
gTTS, Pydub 

Command 

Interpretation 

Registers and validates 

function calling 
requests 

OpenAI API, 

JSON Schem
a 

Internal State 

Management 

CRUD and diagram 

export, action 
orchestration 

SQLite, 

Python dict 

Diagram Export Converts JSON to 

PlantUML and execute 

PlantUML via 

command line 

PlantUML, 

subprocess 

API REST and 
WebSocket 

Exposes synchronous 
and asynchronous 

operations 

FastAPI, 
HTTPX, 

AnyIO 

User Interface 
(Client) 

Dynamic SVG 
rendering and TTS 

playback 

React, 
PlantUML 

Source: Own elaboration 

 

4.4 Validation 

 

The evaluation focused solely on technical aspects 

by performing core tasks: creating a diagram from 

scratch, incremental editing, and navigating an 

existing diagram. To quantify the system’s 

effectiveness and usability, the following metrics 

were defined: 

- Time on task: the duration elapsed from the 

start to the completion of each task (in seconds). 

This metric evaluates workflow efficiency and 

is calculated as: 

 

𝑇𝑡𝑎𝑠𝑘 = 𝑡𝑓𝑖𝑛 − 𝑡𝑖𝑛𝑖 (1) 

 

where 𝑡𝑖𝑛𝑖  and 𝑡𝑓𝑖𝑛 correspond to the 

timestamps marking the start and end of the 

task, respectively [28]. 

- Recognition Accuracy: the proportion of 

commands correctly interpreted by the system, 

defined as 

 

𝐴𝑟𝑒𝑐 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑁𝑡𝑜𝑡𝑎𝑙

× 100% (2) 

 

where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  is the number of commands 

executed without recognition error, and 𝑁𝑡𝑜𝑡𝑎𝑙  
is the total number of commands issued by the 

user. 

- Error Rate: the complement of accuracy, 

calculated as: 

 

𝐸 = 100% − 𝐴𝑟𝑒𝑐 (3) 

 

- TTS Latency: the elapsed time between the 

invocation of the synthesis function and the 

start of audio playback, measured in 

milliseconds. 

 

𝐿𝑇𝑇𝑆 = 𝑡𝑖𝑛𝑖𝑅𝑒𝑝 − 𝑡𝑖𝑛𝑖𝐼𝑛𝑣 (4) 

 

where, 𝑡𝑖𝑛𝑖𝑅𝑒𝑝is the playback start time and  

𝑡𝑖𝑛𝑖𝐼𝑛𝑣 is the invocation start time. 

 

See Table 4 for system metrics evaluation. 

 
Table 4: System Metrics Evaluation Table. 

 

Metric m  ds Obj 
Creation Time 

(s) 

4.23s ±1.8 – 

Editing Time 

(s) 

6.78s ±1.4 – 

Navigation 

Time (s) 

5.24s – – 

Recognition 

Acc (%) 

97 % – ≥ 90 % 

Error Rate (%) 3 % – ≤ 10 % 

TTS Latency 

(ms) 

1468ms ±224 < 500 ms 

ds: standard deviation 

Source: Own elaboration 

 

4.5 Discussion  

 

The analysis of the results allows for the 

identification of relevant technical aspects and their 

implications within the domain of users with visual 

impairments: 

 

The recognition accuracy reached 97%, exceeding 

the minimum threshold of 90% established in RF2. 

This level of accuracy indicates that the STT engine 

and the NLP engine, combined, provide adequate 
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reliability for most interactions, reducing the need 

for clarification requests to the user. 

 

The average TTS latency of 1468 ms exceeds the 

target of 500 ms (RNF3), which prevents 

guaranteeing prompt auditory confirmations. The 

largest latency cost component is the NLP module. 

 

The average times for the tasks of creation (4.23 s), 

editing (6.78 s), and navigation (5.24 s) reflect the 

entire interaction flow—from dictation to view 

update. Although these values exceed the command 

processing metric (< 1.5 s) defined in RF1, it is 

important to consider that they include NLP 

operations, persistence, and rule validation. For 

users with visual impairments, minimizing the 

number of steps in the workflow and optimizing the 

WebSocket channel can help reduce the total task 

time. 

 

Full compliance with UML syntactic rules (RF3) 

and the generation of valid JSON (RF4) confirm the 

robustness of the semantic layer and the diagram 

orchestrator.  

 

Accessibility: the adoption of WCAG 2.2 and ARIA 

for navigation and labeling ensures that the system 

meets the expected accessibility criteria. Although 

usability metrics were not quantified in this phase, 

technical compliance lays the groundwork for a 

future evaluation using the SUS scale. 

 

 

5. CONCLUSIONS 

 

The implementation of a coherent internal model 

and the exposure of diagrams in JSON format 

ensure interoperability with CASE tools and UML 

syntactic consistency. Although overall task times 

(4–7 s) exceed isolated command processing 

thresholds, the system’s modularity enables 

optimization approaches focused on the orchestrator 

and the reduction of client-side operations. 

 

In terms of application in educational settings, the 

system demonstrates technical feasibility to support 

UML modeling activities via voice, which could 

enhance autonomy and efficiency for students with 

visual impairments. 

 

As future work, we propose extending the repertoire 

of CRUD commands as well as the types of 

diagrams supported. Additionally, optimizing the 

WebSocket channel and the interaction with the 

NLP module—where the greatest latency cost is 

concentrated—will be prioritized and conduct a 

usability evaluation using the SUS scale and adjust 

the NLU prompts based on feedback from real users. 
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