
ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

171

Voice Driven UML Modeling System for Visually

Impaired Students in Software Engineering Education

Sistema de modelado UML controlado por voz para estudiantes con

discapacidad visual en la formación en Ingeniería de Software

PhD. Carlos Henriquez Miranda 1, Ing. Malak Andres Sanchez Cataño 1,

PhD. German Sanchez-Torres 1

1 Universidad del Magdalena, Facultad de Ingeniería, Grupo de Investigación y Desarrollo en Sistemas y Computación, Santa

Marta, Magdalena, Colombia.

Correspondence: chenriquezm@unimagdalena.edu.co

Received: march 25, 2025. Accepted: july 29, 2025. Published: august 06, 2025.

How to cite: C. Henriquez Miranda, M. A. Sanchez Cataño, and G. Sanchez-Torres, “Voice Driven UML Modeling System for Visually

Impaired Students in Software Engineering Education”, RCTA, vol. 2, no. 46, pp. 171–180, Aug. 2025.

Recovered from https://ojs.unipamplona.edu.co/index.php/rcta/article/view/4126

This work is licensed under a

Creative Commons Atribución-NonComercial 4.0.

Abstract: Visual impairment limits students’ access to object‑oriented modeling

environments that rely on graphical interfaces. Advances in Text‑to‑Speech (TTS) and

Speech‑to‑Text (STT) technologies make it possible to consider mechanisms to compensate

for this barrier, yet their adoption in educational platforms lacks evidence‑based guidelines.

This work aims to design, implement, and validate a voice‑controlled UML modeling

system that enables visually impaired students to create, edit, and query class and use‑case

diagrams. A four‑phase methodology was followed: (i) requirements elicitation; (ii)

modular architectural design with grammatical validation and the use of large language

models (LLMs); (iii) implementation in Python 3.11, FastAPI, and cloud‑based STT/TTS

services; and (iv) technical evaluation using recognition accuracy, latency, and task‑time

metrics. The prototype executed 20 critical commands with a recognition accuracy of 97 %

and maintained full syntactic coherence in the UML models generated. The average times

to complete creation, editing, and navigation tasks were 4.23 s, 6.78 s, and 5.24 s,

respectively. The average TTS latency (1,468 ms) exceeded the 500 ms target, identifying

the NLP module as the main bottleneck. The system demonstrates technical feasibility and

adheres to the defined accessibility guidelines (WCAG 2.2). Future improvements will

focus on reducing TTS latency, expanding the command repertoire, and conducting

large‑scale usability evaluations (SUS).

Keywords: accessibility, speech synthesis, UML modeling.

Resumen: La discapacidad visual limita el acceso de los estudiantes a entornos de

modelado orientado a objetos que dependen de interfaces gráficas. El avance en las

tecnologías Text‑to‑Speech (TTS) y Speech‑to‑Text (STT) permite pensar en mecanismos

para compensar esta barrera, pero su adopción en plataformas educativas carece de

directrices basadas en evidencia. Este trabajo se orienta hacia diseñar, implementar y

validar un sistema de modelado UML controlado por voz que permita a estudiantes con

Digital Object Identifier: 10.24054/rcta.v2i46.4126

https://ojs.unipamplona.edu.co/index.php/rcta/article/view/4126
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-8252-1413
https://orcid.org/0009-0007-8398-5392
https://orcid.org/0000-0002-9069-0732
https://creativecommons.org/licenses/by-nc/4.0/
https://ojs.unipamplona.edu.co/index.php/rcta/article/view/4126

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

172

discapacidad visual crear, editar y consultar diagramas de clases y de casos de uso. Se siguió

una metodología de cuatro fases: (i) levantamiento de requisitos; (ii) diseño arquitectónico

modular con validación gramatical y uso de LLMs; (iii) implementación en Python 3.11,

FastAPI y servicios de STT/TTS en la nube; (iv) evaluación técnica empleando métricas de

precisión de reconocimiento, latencia y tiempos de tarea. El prototipo ejecutó 20 comandos

críticos con una precisión de reconocimiento del 97 % y mantuvo coherencia sintáctica total

en los modelos UML generados. El tiempo medio para completar tareas de creación,

edición y navegación fue de 4,23 s, 6,78 s y 5,24 s, respectivamente. La latencia promedio

de TTS (1 468 ms) superó el objetivo de 500 ms, identificando al módulo PLN como

principal cuello de botella. El sistema demuestra viabilidad técnica y sigue lineamientos de

accesibilidad definidos (WCAG 2.2). Las mejoras futuras se centrarán en reducir la latencia

TTS, ampliar el repertorio de comandos y realizar evaluaciones de usabilidad (SUS) a gran

escala.

Palabras clave: accesibilidad, síntesis de voz, modelado UML.

1. INTRODUCTION

Visual impairment represents a significant barrier to

educational inclusion and independent learning

today. According to the World Health Organization,

more than one billion people have some degree of

visual deficiency [1], which restricts their access to

printed texts, graphical interfaces, and conventional

educational environments.

In this context, assistive auditory technologies,

particularly text-to-speech (TTS) synthesis, emerge

as a key resource for converting textual content into

audible information, enhancing cognitive

accessibility and the autonomy of students with

visual impairments. The growing adoption of online

education platforms and remote learning

environments increases the need for interactive

vocal feedback mechanisms—such as reading texts,

quizzes, and exams—to ensure equal learning

opportunities.

Although voice feedback is well established in

navigation applications for independent mobility, its

integration into educational platforms requires a

thorough analysis of interaction dynamics,

multisensory synergy, and the measurement of

pedagogical outcomes. Additionally, regulatory

frameworks such as the Web Content Accessibility

Guidelines (WCAG) [2], demand not only the

incorporation of TTS functions but also their

coherence in pedagogical workflows and interactive

interfaces; however, they lack evidence-based

guidelines on their effective application.

Furthermore, recent research on interactive

technologies for users with visual disabilities shows

valuable technical and interaction advancements,

but it falls short in establishing a comprehensive

approach that articulates designs, architectures, and

evaluation metrics.

In some specific contexts, significant developments

in this direction include: in mobility, wearable

devices combine auditory feedback with ultrasonic

and infrared sensors, yielding good results but with

weaknesses in studies on their safety in real-world

environments [1].

In the field of remote music education, Networked

Music Performance platforms prioritize low latency

and high sound fidelity for students with multiple

disabilities, but omit TTS schemes that facilitate

real-time textual feedback [3]. Similarly, in the

learning of virtual textures, vibrotactile stimuli and

voice synthesis have been integrated for material

classification, showing potential for non-visual

recognition but limiting themselves to non-textual

domains [4].

Despite the aforementioned contributions,

weaknesses still persist. There are no

comprehensive comparisons of usability criteria nor

evaluations of effectiveness in learning

performance. Without a comparative framework,

developers and educators lack objective criteria to

select and adjust TTS technologies that optimize

both user experience and academic outcomes [5].

In this context, the present work proposes a voice-

activated UML modeling system, specifically

designed for students with visual impairments in

software engineering education environments.

Unlike general approaches based solely on content

reading, this proposal focuses on bidirectional

interaction through verbal commands that allow the

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

173

creation, editing, and consultation of UML diagram

elements. The initiative responds to the need to

integrate TTS and STT technologies in learning

environments, where vocal feedback not only

converts text to audio but actively participates in

navigation and the construction of technical

knowledge. To this end, a methodology was

developed, structured in four phases, ranging from

requirement gathering to technical validation.

This document is structured as follows: Section 2

describes work in three different areas. Section 3

outlines the methodology used for prototype

development. Sections 4, 5, and 6 present the

results, discussion, and conclusions, respectively.

2. TECHNOLOGICAL BACKGROUND

Recent developments in assistive technologies for

people with visual impairments are grouped into

three complementary areas.

2.1 Non-Educational Assistive Technologies

Portable orientation and mobility devices for people

with low vision combine readings from RGB-

D/stereo cameras and ultrasound, providing

auditory or haptic feedback with high precision, but

are weak in standardized safety metrics and

validations in dynamic environments [1].

Other works explore vibrotactile displays where a

Convolutional Neural Network (CNN) smooths

contours and translates them into directional

patterns that accelerate exploration [6], and 16 × 16

MEMS Braille displays coupled with haptic-

auditory environments, which, using Seq2Seq +

WaveNet models, recognize characters with 97%

accuracy in 0.5 seconds [7].

Portable robotic guides trained using Human Path

Prediction Network (HPPN) for trajectory

estimation, employing a Covariance Matrix

Adaptation Evolution Strategy (CMA-ES), achieve

reliable trajectories with 1,507 real episodes [8].

In space-touch interaction, MapIO [9] combines

physical maps, voice synthesis, and LLM-based

dialogue, improving System Usability Scale (SUS)

response accuracy at the cost of higher inference

latency. The Force-Feedback Tablet (20 × 20 cm, <1

kg) uses a flat thumbstick to generate haptic effects

(friction, edges, attraction) and reduces guided

exploration time by 44%, with tests limited to the

laboratory [10]. Finally, the VIS4ION system

integrates 5G sub-6 GHz/mmWave edge computing

to process high-resolution vision with global latency

<100 ms, though energy consumption and

ergonomics in real-world scenarios still need

evaluation [11].

2.2 Educational Tactile and Haptic Interfaces

Tactile graphics (TG) have been proposed and used,

which translate images into relief through dynamic

screens, vibrotactile actuators, and force feedback to

represent mathematical structures and curves [12].

In music, the challenges focus on latency. Low-

latency platforms like LOLA, JackTrip, SoundJack,

JamKazam, SonoBus, or FarPla aim for very low

latencies, similar to in-person ones (L ≤ 30 ms), but

require dedicated hardware and still lack fully

accessible interfaces [3]. Similarly, a multimodal

haptic engine combining Informer and VGG16

generates high-fidelity signals in 45–57 ms with

93,33% accuracy by combining vibration and

TTS [4].

In education and rehabilitation, the Hyperbraille

display [13] (30 × 32 taxels, 5 Hz) reports

improvements of 33–68% in shape recognition and

41–61% in spatial memory. Tools like TAURIS [12]

allow exploring pre-labeled graphs with contextual

narration, surpassing traditional Braille and screen

readers. A recent taxonomy maps solutions for

access to and creation of mathematical content,

highlighting the prevalence of TTS and standards

such as MathML and EPUB3 Similarly,

GraficiAccessibili [14] employs rhythmic

sonification and vibration to represent functions on

Android tablets, achieving correct identification

after brief training, though limited to simple

functions. Tangible interfaces, e.g., Tac Trace [15],

use 3D tokens tracked by Trackmate vision to

provide Arabic audio and teacher tracking.

Finally, the application of asymmetric vibrations in

white canes significantly reduces the Root Mean

Square Error (RMSE) of sweep width during the

touch technique learning process, enabling remote

training without physical contact with the specialist

 [16]. Finally, the application of asymmetric

vibrations in white canes significantly reduces the

RMSE of sweep width during the touch technique

learning process, enabling remote training without

physical contact with the specialist.

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

174

2.3 Multimodal Curriculum and Assessment

Tools

This line of research investigates instructional

environments that synchronize audio, touch, and

visualization with automated feedback, structured

dialogue, and learning analytics. Their frameworks

are typically based on Design-Based Research

cycles and support TTS/STT and screen readers to

maximize accessibility and personalization.

In higher education, digital peer assessment (DPA)

enables students to evaluate their peers' work while

developing critical thinking skills [17].

Accessible Design-Based Research frameworks

integrate audio and haptics. For example, Eyeland

achieved a 91.7% satisfaction rate and improved

performance for both users with visual impairments

and sighted individuals [18].

A multilingual accessible writing system, based on

Random Forest (f1 = 0.998) and a confidence

threshold > 70%, demonstrated the feasibility of

incorporating automatic and auditory assessment in

APD [19]. A conversational graph exploration

system, based on rule-guided dialogue to describe

finite automata, outperformed the standard HTML

representation in an A/B test (p < 0.05), while

generic LLMs failed to maintain consistency [20].

3. METHODOLOGY

The research was structured in four sequential

phases, each aimed at a specific objective (see Fig

1):

- In Phase 1, requirement gathering and the

definition of use scenarios for students with

visual impairments in Unified Modeling

Language (UML) modeling activities were

carried out. Based on interviews with

instructors and the analysis of curricula, the

priority UML artifacts and the workflows that

the prototype should support were identified.

- Phase 2 was dedicated to the architectural

design of the system. A modular solution was

defined, capable of receiving voice or text

commands, processing their meaning through

grammar rules and Natural Lenguage

Processing (NLP) services, and managing the

generation and persistence of diagrams in

JSON format. Communication protocols,

integration patterns, and accessibility criteria

were established based on WCAG 2.2.

- During Phase 3, the prototype was implemented

and integrated using Python 3.11. FastAPI was

employed for the web service, SQLite as a

lightweight storage solution, and independent

adapters for the STT, TTS, and LLM services.

Continuous delivery and automated testing

ensured code quality and the stability of the

REST and WebSocket interfaces.

- In Phase 4, the system evaluation with real

users was programmed. A pilot study with

students with visual impairments was designed

to measure performance, command recognition

accuracy, and usability using the SUS scale.

The data obtained in this phase will guide the

fine-tuning of the components and NLU

prompts.

 Fig. 1. Outline of the general methodology applied.

Source: Own elaboration.

4. RESULTS AND DISCUSSION

4.1 Requirement Gathering and Scenario

Definition

During this phase, three semi-structured interviews

were conducted with Software Engineering faculty

members, complemented by the analysis of current

curricula. From this analysis, it was concluded that,

in undergraduate UML modeling courses, class

diagrams and use case diagrams dominate the

majority of practical activities. This prevalence is

documented both in curriculum mapping studies for

Software Engineering education [21], [22] and in

the UML 2.5 specification itself [23], which

recommends these artifacts to represent,

respectively, the system's static structure and

functional requirements.

Two main usage scenarios were defined for these

two types of diagrams: on one hand, the creation of

a model from scratch during a practical session, and

on the other hand, the incremental editing of an

already existing diagram. These scenarios allowed

for the definition of an initial set of 41 voice

commands organized into nine categories —seven

global (e.g., start, save, or undo), six for navigation

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

175

and querying, and 28 specifics for CRUD operations

(Create, Read, Update, and Delete) on classes and

use cases— (see Table 1). The repertoire includes

instructions such as "create a customer class," "add

a name attribute to Customer," or "link the User

actor to the Register use case”.

To validate the minimum viable product (MVP), 20

of these commands (50% of the total) were

implemented, focusing exclusively on operations

related to class and use case diagrams. This

approach ensures that the voice interface covers the

critical tasks identified in the requirements

gathering, in line with the recommendations of [24]

regarding the prioritization of artifacts in

educational environments.

Based on response time and accuracy metrics

reported in the literature, the objective was set for

each command to be processed in less than 2.0

seconds with a recognition accuracy rate of at least

90% in voice recognition [25]. Similarly, it was

defined that the system must maintain a consistent

internal model, apply UML syntactic rules, and

expose the diagram structure in JSON format for

persistence and export. In general, the established

specification (see Table 2):

- Functional requirements:

• Multimodal input (voice/text)

• Processing time ≤ 2,0 s

• Accuracy ≥ 90 %

- Non-functional requirements:

• End-to-end latency < 4 s on academic

networks (< 10 Mbps)

• Compliance with WCAG 2.2 (Web

Content Accessibility Guidelines)

• Accessible Rich Internet Applications

(ARIA) navigation and labeling, ensuring

traceability and compatibility with existing

CASE tools.

Table 1: Examples of CRUD commands from the prototype

Commands Category Diagram

Create a class <Name>
CRUD
class

Classes

Delete a class <Name>
CRUD

class
Classes

Rename class <Old> to <New>
CRUD

class
Classes

Add an attribute <Attribute> to <Class>
CRUD
class

Classes

Commands Category Diagram

Add a method <Method> to <Class>
CRUD

class
Classes

Undo the last action Control Both

Create a use case <Name>
CRUD

use case
Use cases

Link actor <Actor> with use case
<Name>

CRUD
use case

Use cases

Save the diagram Global Both

Close the diagram Global Both

Source: Own elaboration

Table 2: Defined requirements

ID Requirement Type Target Value

RF1 Interpret each
command in less

than 1.5 s

Functional < 1,5 s

RF2 Minimum accuracy
in voice recognition

Functional ≥ 92 %

RF3 Consistent internal

model with UML
syntactic rules

Functional Full

compliance

RF4 Expose diagram in
JSON format for

persistence/export

Functional Valid JSON

RNF
1

End-to-end latency
on academic

networks (≤ 10

Mbps)

Non-
functional

< 4 s

RNF

2

Compliance with

WCAG 2.2

(contrast, ARIA,
keyboard

navigation)

Non-

functional

Compliance

with all

criteria

RNF
3

Auditory feedback
with explicit

confirmations (TTS)

Non-
functional

Confirmation
after each

action

Source: Own elaboration

4.2 Architectural design

The system was structured with a three-layer

modular pattern — input, semantic processing, and

generation — complemented by a presentation

module (see Figure 2). Each layer groups

components with well-defined responsibilities,

facilitating traceability between requirements and

design [26].

In the input layer, a Voice Command Interpreter

capable of receiving both audio signals (via the STT

service) and written text. In line with the Web

Speech API for modern browsers, this component

converts dictation into raw text and queues the

requests for subsequent analysis. To ensure

accessibility, all control elements are labeled

according to WCAG and ARIA specifications, and

it includes keyboard navigation.

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

176

The semantic processing layer integrates two

subcomponents. First, a syntax validator based on

UML Grammar Rules (implemented in

JSON Schema) discards malformed structures and,

if necessary, invokes a disambiguation engine that

generates clarification requests to the user. Second,

an external Natural Language Processing (NLP)

service — implemented through calls to a function

calling translates the validated text into CRUD

operations on UML elements. This hybrid approach,

combining controlled grammars and language

models, balances precision and flexibility [27].

In the generation and persistence layer resides the

Diagram Orchestrator, responsible for coordinating

changes to the internal model and exposing it in

JSON format through a REST API. For real-time

notifications (e.g., view updates), a WebSocket

channel is enabled. Persistence uses SQLite as a

lightweight storage solution, facilitating export and

integration with CASE tools.

Finally, the presentation module runs on a React

client that consumes the REST API and the

WebSocket channel to render SVG diagrams using

PlantUML. This client plays TTS outputs to confirm

each action and updates the interface without

reloading, meeting the requirements for operability

and robustness [28].

Fig. 2. Block diagram with three zones: (i) Accessible Input —the user dictates or writes a UML command; (ii) Semantic Processing —the

command passes through the interpreter, UML mapping and a query to validate LLM with UML rules; (iii) Model Generation/Management

—internal state persisted, and audio/text responses returned to the user.
Source: Own elaboration.

4.3 Implementation and Integration

The prototype was developed entirely in Python

3.11 and was organized into modules that cover

everything from audio capture to the generation of

the final diagram. The application starts in the main

script, where credentials and configuration

parameters are read, and instances of the following

are created:

- LLMInterface, responsible for communication

with the language model and managing the

registration and invocation of tools through

function calling.

- InternalStateManager, which maintains the

internal state of the diagrams, logs each

operation as a tool, and executes CRUD and

export functions.

- AudioHandler, which delegates audio-to-text

conversion and microphone audio capture to

the STT_module and TTS_module.

In the main loop, the system alternates between text

and voice modes; in the case of voice, AudioHandler

listens to the PCM signal and converts it to WAV

using Pydub before invoking the Google recognition

service. The resulting text is sent to LLMInterface,

which generates a structured response according to

the JSON schemas defined in function_schemas.py.

This response invokes the corresponding tool in

InternalStateManager, which updates the internal

model stored in SQLite and returns a confirmation

message. Then, AudioHandler synthesizes the

response into audio and plays it back to the user.

Persistence and interoperability with CASE tools

are achieved by exporting the internal model to

JSON, which transforms into a PlantUML script and

processes via the command line to produce a

diagram in PNG, SVG, or PDF format.

Communication between back-end components is

handled using FastAPI (REST endpoints for discrete

operations) and a WebSocket server (for real-time

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

177

notifications), supported by HTTPX and AnyIO for

asynchronous operation (see Table 3).

To facilitate extensibility and maintainability, each

LLM tool is associated with a JSON schema that

validates input parameters before executing the

function. This pattern ensures that only requests

with the expected structure are executed, reducing

deserialization errors and enhancing the robustness

of the prototype (Newman, 2015).

Table 3: Implementation of Components and Technologies Used

Module Main Function Tecnología

Audio Capture Listens to keyboard

events and records raw
audio

pyaudio,

keyboard

Speech

Recognition
(STT)

Converts audio to text

using API

speech_recog

nition, Pydub

Text-to-Speech

(TTS)

Generates audio from

text using Google
Cloud TTS or gTTS

google-cloud-

texttospeech,
gTTS, Pydub

Command

Interpretation

Registers and validates

function calling
requests

OpenAI API,

JSON Schem
a

Internal State

Management

CRUD and diagram

export, action
orchestration

SQLite,

Python dict

Diagram Export Converts JSON to

PlantUML and execute

PlantUML via

command line

PlantUML,

subprocess

API REST and
WebSocket

Exposes synchronous
and asynchronous

operations

FastAPI,
HTTPX,

AnyIO

User Interface
(Client)

Dynamic SVG
rendering and TTS

playback

React,
PlantUML

Source: Own elaboration

4.4 Validation

The evaluation focused solely on technical aspects

by performing core tasks: creating a diagram from

scratch, incremental editing, and navigating an

existing diagram. To quantify the system’s

effectiveness and usability, the following metrics

were defined:

- Time on task: the duration elapsed from the

start to the completion of each task (in seconds).

This metric evaluates workflow efficiency and

is calculated as:

𝑇𝑡𝑎𝑠𝑘 = 𝑡𝑓𝑖𝑛 − 𝑡𝑖𝑛𝑖 (1)

where 𝑡𝑖𝑛𝑖 and 𝑡𝑓𝑖𝑛 correspond to the

timestamps marking the start and end of the

task, respectively [28].

- Recognition Accuracy: the proportion of

commands correctly interpreted by the system,

defined as

𝐴𝑟𝑒𝑐 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑁𝑡𝑜𝑡𝑎𝑙

× 100% (2)

where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 is the number of commands

executed without recognition error, and 𝑁𝑡𝑜𝑡𝑎𝑙
is the total number of commands issued by the

user.

- Error Rate: the complement of accuracy,

calculated as:

𝐸 = 100% − 𝐴𝑟𝑒𝑐 (3)

- TTS Latency: the elapsed time between the

invocation of the synthesis function and the

start of audio playback, measured in

milliseconds.

𝐿𝑇𝑇𝑆 = 𝑡𝑖𝑛𝑖𝑅𝑒𝑝 − 𝑡𝑖𝑛𝑖𝐼𝑛𝑣 (4)

where, 𝑡𝑖𝑛𝑖𝑅𝑒𝑝is the playback start time and

𝑡𝑖𝑛𝑖𝐼𝑛𝑣 is the invocation start time.

See Table 4 for system metrics evaluation.

Table 4: System Metrics Evaluation Table.

Metric m ds Obj
Creation Time

(s)

4.23s ±1.8 –

Editing Time

(s)

6.78s ±1.4 –

Navigation

Time (s)

5.24s – –

Recognition

Acc (%)

97 % – ≥ 90 %

Error Rate (%) 3 % – ≤ 10 %

TTS Latency

(ms)

1468ms ±224 < 500 ms

ds: standard deviation

Source: Own elaboration

4.5 Discussion

The analysis of the results allows for the

identification of relevant technical aspects and their

implications within the domain of users with visual

impairments:

The recognition accuracy reached 97%, exceeding

the minimum threshold of 90% established in RF2.

This level of accuracy indicates that the STT engine

and the NLP engine, combined, provide adequate

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

178

reliability for most interactions, reducing the need

for clarification requests to the user.

The average TTS latency of 1468 ms exceeds the

target of 500 ms (RNF3), which prevents

guaranteeing prompt auditory confirmations. The

largest latency cost component is the NLP module.

The average times for the tasks of creation (4.23 s),

editing (6.78 s), and navigation (5.24 s) reflect the

entire interaction flow—from dictation to view

update. Although these values exceed the command

processing metric (< 1.5 s) defined in RF1, it is

important to consider that they include NLP

operations, persistence, and rule validation. For

users with visual impairments, minimizing the

number of steps in the workflow and optimizing the

WebSocket channel can help reduce the total task

time.

Full compliance with UML syntactic rules (RF3)

and the generation of valid JSON (RF4) confirm the

robustness of the semantic layer and the diagram

orchestrator.

Accessibility: the adoption of WCAG 2.2 and ARIA

for navigation and labeling ensures that the system

meets the expected accessibility criteria. Although

usability metrics were not quantified in this phase,

technical compliance lays the groundwork for a

future evaluation using the SUS scale.

5. CONCLUSIONS

The implementation of a coherent internal model

and the exposure of diagrams in JSON format

ensure interoperability with CASE tools and UML

syntactic consistency. Although overall task times

(4–7 s) exceed isolated command processing

thresholds, the system’s modularity enables

optimization approaches focused on the orchestrator

and the reduction of client-side operations.

In terms of application in educational settings, the

system demonstrates technical feasibility to support

UML modeling activities via voice, which could

enhance autonomy and efficiency for students with

visual impairments.

As future work, we propose extending the repertoire

of CRUD commands as well as the types of

diagrams supported. Additionally, optimizing the

WebSocket channel and the interaction with the

NLP module—where the greatest latency cost is

concentrated—will be prioritized and conduct a

usability evaluation using the SUS scale and adjust

the NLU prompts based on feedback from real users.

REFERENCES

[1] A. D. P. D. Santos, A. H. G. Suzuki, F. O.

Medola, y A. Vaezipour, «A systematic

review of wearable devices for orientation

and mobility of adults with visual

impairment and blindness», IEEE Access,

vol. 9, pp. 162306-162324, 2021, doi:

10.1109/ACCESS.2021.3132887.

[2] World Wide Web Consortium, «Web

Content Accessibility Guidelines (WCAG)

2.2». diciembre de 2024.

[3] C. Rottondi, M. Sacchetto, L. Severi, y A.

Bianco, «Toward an inclusive framework

for remote musical education and

practices», IEEE Access, vol. 12, pp.

173836-173849, 2024, doi:

10.1109/ACCESS.2024.3501414.

[4] D. Chen et al., «Visually impaired people

learning virtual textures through

multimodal feedback combining

vibrotactile and voice», IEEE Trans.

Neural Syst. Rehabil. Eng., vol. 33, pp.

453-465, 2025, doi:

10.1109/TNSRE.2025.3528048.

[5] S. Raffoul y L. Jaber, «Text-to-Speech

Software and Reading Comprehension:

The Impact for Students with Learning

Disabilities», Canadian Journal of

Learning and Technology, vol. 49, n.o 2,

Art. n.o 2, nov. 2023, doi:

10.21432/cjlt28296.

[6] D. Chen, J. Liu, L. Tian, X. Hu, y A. Song,

«Research on the method of displaying the

contour features of image to the visually

impaired on the touch screen», IEEE

Trans. Neural Syst. Rehabil. Eng., vol. 29,

pp. 2260-2270, 2021, doi:

10.1109/TNSRE.2021.3123394.

[7] D. Chen et al., «Development and

evaluation of refreshable braille display

and active touch-reading system for digital

reading of the visually impaired», IEEE

Trans. Neural Syst. Rehabil. Eng., vol. 32,

pp. 934-945, 2024, doi:

10.1109/TNSRE.2024.3363495.

[8] H. -S. Moon y J. Seo, «Sample-efficient

training of robotic guide using human path

prediction network», IEEE Access, vol. 10,

pp. 104996-105007, 2022, doi:

10.1109/ACCESS.2022.3210932.

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

179

[9] M. Manzoni, S. Mascetti, D. Ahmetovic,

R. Crabb, y J. M. Coughlan, «MapIO: a

gestural and conversational interface for

tactile maps», IEEE Access, vol. 13, pp.

84038-84056, 2025, doi:

10.1109/ACCESS.2025.3566286.

[10] S. L. Gay, E. Pissaloux, K. Romeo, y N. -

T. Truong, «F2T: a novel force-feedback

haptic architecture delivering 2D data to

visually impaired people», IEEE Access,

vol. 9, pp. 94901-94911, 2021, doi:

10.1109/ACCESS.2021.3091441.

[11] Z. Yuan et al., «Network-aware 5G edge

computing for object detection:

Augmenting wearables to “see” more,

farther and faster», IEEE Access, vol. 10,

pp. 29612-29632, 2022, doi:

10.1109/ACCESS.2022.3157876.

[12] M. Zeinullin y M. Hersh, «Tactile audio

responsive intelligent system», IEEE

Access, vol. 10, pp. 122074-122091, 2022,

doi: 10.1109/ACCESS.2022.3223099.

[13] F. Leo, E. Cocchi, y L. Brayda, «The effect

of programmable tactile displays on spatial

learning skills in children and adolescents

of different visual disability», IEEE Trans.

Neural Syst. Rehabil. Eng., vol. 25, n.o 7,

pp. 861-872, jul. 2017, doi:

10.1109/TNSRE.2016.2619742.

[14] P. Mejía, L. C. Martini, F. Grijalva, J. C.

Larco, y J. C. Rodríguez, «A survey on

mathematical software tools for visually

impaired persons: a practical perspective»,

IEEE Access, vol. 9, pp. 66929-66947,

2021, doi:

10.1109/ACCESS.2021.3076306.

[15] S. Gatto, O. Gaggi, L. Grosset, y L. G. N.

Fovino, «Accessible mathematics:

Representation of functions through sound

and touch», IEEE Access, vol. 12, pp.

121552-121569, 2024, doi:

10.1109/ACCESS.2024.3448509.

[16] R. Jafri, S. M. M. Althbiti, N. A. A. Alattas,

A. A. A. Albraiki, y S. H. A. Almuhawwis,

«Tac-trace: a tangible user interface-based

solution for teaching shape concepts to

visually impaired children», IEEE Access,

vol. 10, pp. 131153-131165, 2022, doi:

10.1109/ACCESS.2022.3228455.

[17] T. Tanabe, K. Nunokawa, K. Doi, y S. Ino,

«Training system for white cane technique

using illusory pulling cues induced by

asymmetric vibrations», IEEE Trans.

Neural Syst. Rehabil. Eng., vol. 30, pp.

305-313, 2022, doi:

10.1109/TNSRE.2022.3148770.

[18] G. V. Helden, V. Van Der Werf, G. N.

Saunders-Smits, y M. M. Specht, «The use

of digital peer assessment in higher

education—an umbrella review of

literature», IEEE Access, vol. 11, pp.

22948-22960, 2023, doi:

10.1109/ACCESS.2023.3252914.

[19] K. Villalba et al., «Eyeland: a visually-

impaired accessible english learning

application using a design-based research

framework», IEEE Access, vol. 12, pp.

142275-142290, 2024, doi:

10.1109/ACCESS.2024.3444741.

[20] M. N. Islam et al., «A multilingual

handwriting learning system for visually

impaired people», IEEE Access, vol. 12,

pp. 10521-10534, 2024, doi:

10.1109/ACCESS.2024.3353781.

[21] P. F. Balestrucci, E. Di Nuovo, M.

Sanguinetti, L. Anselma, C. Bernareggi, y

A. Mazzei, «An educational dialogue

system for visually impaired people»,

IEEE Access, vol. 12, pp. 150502-150519,

2024, doi:

10.1109/ACCESS.2024.3479883.

[22] T. C. Lethbridge, S. E. Sim, y J. Singer,

«Studying Software Engineers: Data

Collection Techniques for Software Field

Studies», Empir Software Eng, vol. 10, n.o

3, pp. 311-341, jul. 2005, doi:

10.1007/s10664-005-1290-x.

[23] O. Cico, L. Jaccheri, A. Nguyen-Duc, y H.

Zhang, «Exploring the intersection

between software industry and Software

Engineering education - A systematic

mapping of Software Engineering Trends»,

Journal of Systems and Software, vol. 172,

p. 110736, feb. 2021, doi:

10.1016/j.jss.2020.110736.

[24] Object Management Group, «OMG

Unified Modeling Language (OMG UML),

Version 2.5.1», Object Management Group

(OMG), Specification formal/17-12-05,

dic. 2017. [En línea]. Disponible en:

https://www.omg.org/spec/UML/2.5.1

[25] M. Fowler, UML Distilled: A Brief Guide

to the Standard Object Modeling

Language, 3.a ed. USA: Addison-Wesley

Longman Publishing Co., Inc., 2003.

[26] T.-S. Nguyen, S. Stueker, y A. Waibel,

«Super-Human Performance in Online

Low-latency Recognition of

Conversational Speech», 26 de julio de

2021, arXiv: arXiv:2010.03449. doi:

10.48550/arXiv.2010.03449.

ISSN: 1692-7257 - Volume 2 – Number 46 - 2025

University of Pamplona
 I. I. D. T. A.

180

[27] «Software Architecture in Practice, 3rd

Edition». Accedido: 27 de julio de 2025.

[En línea]. Disponible en:

https://www.sei.cmu.edu/library/software-

architecture-in-practice-third-edition/

[28] S. Geng, M. Josifoski, M. Peyrard, y R.

West, «Grammar-Constrained Decoding

for Structured NLP Tasks without

Finetuning», 18 de enero de 2024, arXiv:

arXiv:2305.13971. doi:

10.48550/arXiv.2305.13971.

[29] J. Nielsen, Usability Engineering. San

Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1994.

