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Resumen: Este documento presenta los resultados de comparar el entrenamiento de 

arquitecturas de aprendizaje profundo aplicadas al desarrollo de sistemas de conducción 

segura. Se generan bases de datos con capturas de 670 imágenes de conductores en el 

interior del vehículo, que se dividieron en tres subconjuntos para el entrenamiento de dos 

arquitecturas basadas en redes neuronales convolucionales (CNN) y redes transformers 

para visión, el 70% de las imágenes se utilizó para el entrenamiento, el 20% se destinó a la 

validación y el 10% restante se reservó para las pruebas. Estas dos arquitecturas se 

comparan con el fin de contrastar su capacidad en el reconocimiento de patrones en la 

clasificación de tres estados de conducción, estado normal, estado de distracción y estado 

de sueño. En ambos casos se evidencia la necesidad de focalizar el aprendizaje a fin de 

mejorar el desempeño en el aprendizaje de las dos arquitecturas, para lo que se incluye una 

etapa previa de segmentación de caras mediante clasificador Haar, obteniéndose niveles de 

precisión del 98% para la CNN y del 87% para la red Transformers, tiempos promedio de 

inferencia de 0.1 y 0.52, F1-score de 98.9% y 82.2%, y recall de 98.8% y 80.6%, 

respectivamente, las métricas estadísticas por clase evidencian el alto grado de confianza 

en el reconocimiento de cada clase. La comparativa se realiza en un equipo de cómputo con 

procesador core i9 de 2.3GHz y 24GB de RAM, una GPU RTX 4080 de 12 GB de memoria, 

bajo software de programación MATLAB®. 

 

Palabras clave: asistente de conducción, redes neuronales convolucionales, detección de 

somnolencia, clasificador Haar, conducción segura, transferencia de aprendizaje, visión por 

computador. 
 

Abstract: This paper presents the results of comparing the training of deep learning 

architectures applied to the development of safe driving systems. Databases were generated 

with 670 images of drivers inside vehicles, which were divided into three subsets for 

training two architectures based on convolutional neural networks (CNNs) and transformer 
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networks for vision. 70% of the images were used for training, 20% for validation, and the 

remaining 10% for testing. These two architectures were compared to assess their pattern 

recognition capabilities in classifying three driving states, normal state, distracted state and 

sleep state. In both cases, the need to focus the learning to improve the learning performance 

of the two architectures is evident, for which a previous stage of face segmentation by 

means of Haar classifier is included, obtaining accuracy levels of 98% for the CNN and 

87% for the Transformers network with average inference times of 0.1 and 0.52 seconds, 

F1 scores of 98.9% and 82.2%, and recall rates of 98.8% and 80.6%, respectively, the 

statistical metrics for each class demonstrate a high degree of confidence in the recognition 

of each class. The comparison was performed on a computer with a 2.3GHz Core i9 

processor, 24GB of RAM, and an RTX 4080 GPU with 12GB of memory, using 

MATLAB® programming software. 

 

Keywords: driving assistant, convolutional neural networks, drowsiness detection, haar 

classifier, safe driving, transfer learning, computer vision. 

 
 

1. INTRODUCCIÓN 

 

En los últimos años, garantizar una conducción 

segura [1] se ha convertido en una preocupación 

fundamental debido al creciente número de 

accidentes de tráfico en todo el mundo [2]. Los 

sistemas avanzados de asistencia al conductor 

(ADAS) y los sistemas de monitorización del 

conductor (DMS) [3] han surgido como soluciones 

prometedoras para mejorar la seguridad vial 

mediante la detección de signos de somnolencia, 

distracción o comportamiento de conducción 

inseguro. Con el rápido avance del aprendizaje 

profundo, las técnicas de visión por ordenador han 

desempeñado un papel central en la mejora del 

rendimiento de estos sistemas. Entre los enfoques 

más destacados, dentro del estado del arte y 

asociados a sistemas no invasivos como los 

algoritmos de inteligencia artificial, se encuentran 

las redes neuronales convolucionales (CNN), que 

han demostrado un éxito notable en tareas basadas 

en imágenes [4] [5], y las redes Transformers de 

Visión (ViT), una arquitectura más reciente que ha 

mostrado resultados sobresalientes en diversas 

aplicaciones de visión [6]. 

 

La seguridad vial se ha convertido en una de las 

preocupaciones mundiales más acuciantes de los 

últimos años [7]. Según la Organización Mundial de 

la Salud, los accidentes de tráfico cobran 

aproximadamente 1,35 millones de vidas cada año, 

y un número aún mayor de personas sufren lesiones 

graves [8]. Uno de los principales responsables de 

estos accidentes es el error humano, a menudo 

causado por la somnolencia, las distracciones o los 

comportamientos de riesgo al volante. Para hacer 

frente a este reto, se han desarrollado tecnologías 

avanzadas para supervisar el comportamiento del 

conductor y detectar señales de conducción 

insegura, con el objetivo de prevenir accidentes 

antes de que se produzcan. Entre estas tecnologías, 

los sistemas basados en visión por ordenador [9] han 

recibido una atención significativa debido a su 

capacidad para procesar datos visuales en tiempo 

real y proporcionar evaluaciones precisas del estado 

del conductor. 

 

En el campo de la visión por ordenador, el 

aprendizaje profundo ha surgido como un enfoque 

transformador que permite a los modelos aprender 

patrones y características complejas directamente a 

partir de los datos basados en imágenes. Dos 

arquitecturas líderes en este campo son las CNN y 

ViT [10] [11]. Las CNN han sido la piedra angular 

de las tareas de clasificación de imágenes y 

detección de objetos durante más de una década, 

demostrando un rendimiento impresionante en una 

amplia gama de aplicaciones. Su extracción 

jerárquica de características aprovecha la 

conectividad local y el reparto de pesos, lo que las 

hace especialmente adecuadas para el 

procesamiento de imágenes y vídeos. Sin embargo, 

las CNN tienen ciertas limitaciones, como su 

dependencia de grandes conjuntos de datos 

etiquetados y las dificultades para captar las 

dependencias de largo alcance dentro de una 

imagen. 

 

En contraste, las redes ViT representan un enfoque 

más reciente que aplica la arquitectura de 

Transformers, diseñada originalmente para tareas de 

procesamiento del lenguaje natural, a problemas de 

visión [12]. Las ViT dividen las imágenes en 

parches y las procesan como secuencias, lo que 

permite al modelo capturar el contexto global 

mediante mecanismos de autoatención. Este diseño 

permite a las ViT superar algunas de las deficiencias 

de las CNN, en particular a la hora de modelar 
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relaciones de largo alcance y aprender 

representaciones más holísticas. Estudios recientes 

han demostrado que los ViT pueden superar a las 

CNN en varias pruebas de referencia de 

reconocimiento de imágenes, siempre que se 

entrenen con conjuntos de datos suficientemente 

grandes. 

 

Las investigaciones orientadas a los sistemas de 

conducción segura se centran en gran medida en las 

tecnologías autónomas, especialmente en tareas de 

detección de objetos como el reconocimiento de 

peatones y la evasión de obstáculos [13] [14]. Sin 

embargo, la investigación centrada en los sistemas 

de seguridad orientados al conductor sigue siendo 

muy relevante y continúa avanzando. Estos 

esfuerzos abordan áreas críticas como la supervisión 

de la sobriedad del conductor [15], la evaluación del 

comportamiento al volante mediante la detección de 

desequilibrios o movimientos erráticos [16] y, lo 

que es más notable, la detección de signos de 

somnolencia o sueño en el conductor [17], donde, 

por ejemplo, para la detección del sueño se requiere 

una clara identificación de la apertura del ojo [18]. 

 

Aunque los sistemas autónomos están diseñados 

para minimizar los errores humanos, los enfoques 

centrados en el conductor siguen siendo cruciales 

para mejorar la seguridad vial. Al supervisar 

continuamente el estado físico y cognitivo del 

conductor, estos sistemas pueden proporcionar 

alertas oportunas y ayudar a prevenir accidentes 

causados por la fatiga, la distracción u otros factores 

humanos. En lugar de sustituir al conductor, 

trabajan a su lado, ofreciéndole apoyo cuando lo 

necesita y reduciendo los riesgos en la vía. Cuando 

se combinan, las tecnologías autónomas y las 

estrategias centradas en el conductor crean un marco 

de seguridad más completo y eficaz. Este enfoque 

integrado no sólo aborda los retos técnicos, sino que 

también tiene en cuenta el elemento humano, 

contribuyendo en última instancia a crear entornos 

de conducción más seguros y fiables para todos los 

que circulan por la carretera. 

 

Se están desarrollando nuevos modelos de 

aprendizaje para mejorar la detección del sueño del 

conductor, utilizando enfoques como las redes 

híbridas [19] y la captura de señales 

electroencefalográficas (EEG) [20] [21]. El EEG 

también se ha aplicado para detectar la fatiga del 

conductor [22], a menudo combinado con métodos 

avanzados de extracción de características como el 

análisis wavelet [23] y lógica difusa [24]. Más 

recientemente, los algoritmos de aprendizaje 

profundo han demostrado un gran rendimiento en 

este ámbito [25], trabajando con éxito tanto con 

señales de EEG [26] como en la identificación de 

anomalías en el comportamiento o la trayectoria de 

conducción [27]. Estos avances resaltan el creciente 

papel del aprendizaje automático y el procesamiento 

de señales en la mejora de los sistemas de 

supervisión de conductores y de la seguridad vial en 

general, con la limitante de requerir capturar las 

señales EEG del paciente. 

 

Entre los principales algoritmos de aprendizaje 

profundo se encuentran las redes neuronales 

convolucionales CNN [28], que también han 

demostrado ser eficientes en la detección de 

conductores con sueño con base en arquitecturas 

ResNet [29] [30]. En este caso, existen modelos pre-

entrenados por transferencia de aprendizaje [31], 

que utilizan arquitecturas CNN robustas como la red 

YOLO [32], basadas en la identificación ocular.  

 

Los desarrollos expuestos han demostrado las 

ventajas de las redes profundas en detección de 

somnolencia, sin embargo, dichos trabajos implican 

intervención del humano (captura EEG) o 

especificidad de la detección ocular, lo cual delimita 

sus aplicaciones en tiempo y escenarios reales. 

 

Más recientemente en el estado del arte se utilizan 

modelos de aprendizaje profundo como las redes de 

memoria a corto y largo plazo [33] y para la 

detección de imágenes están ganando fuerza las 

redes Transformers [34], que también se están 

empezando a validar en conducción autónoma como 

la detección de señales de tráfico [35]. Sin embargo, 

no es clara su ventaja frente a algoritmos CNN 

orientados a detección de sueño en un entorno de 

conducción segura al momento de revisión de la 

literatura. 

 

En línea con las investigaciones expuestas y las 

ventajas de los algoritmos de aprendizaje profundo 

para conducción segura, este trabajo presenta una 

comparación entre una arquitectura de CNN y un 

modelo pre-entrenado ViT [36] [37], para detectar 

estados de conducción clasificados como normal, 

distraído o somnoliento. Al evaluar el rendimiento 

de estos dos enfoques, el estudio contribuye al 

estado del arte de los sistemas de monitorización de 

conductores, aportando los tiempos de respuesta en 

la inferencia de cada red en escenarios reales de 

conducción, bajo sistemas no invasivos ni centrados 

en el ojo, lo que da más generalidad al aprendizaje 

del patrón de cansancio. 

 

La comparación pretende resaltar los puntos fuertes 

y las limitaciones de cada modelo, sobre todo en lo 
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que respecta a su solidez y capacidad de 

generalización en diversas condiciones de 

conducción. Este análisis proporciona información 

valiosa sobre qué arquitectura puede ser más 

adecuada para las aplicaciones del mundo real, 

ayudando a informar sobre el desarrollo de sistemas 

más fiables y eficientes para mejorar la seguridad 

del conductor y reducir los accidentes de tráfico. 

 

Este artículo se divide en cuatro secciones, la 

introducción con una exposición del estado del arte 

y el objetivo de este trabajo. La metodología, donde 

se exponen las características de la base de datos y 

las arquitecturas utilizadas. El análisis de resultados, 

donde se muestran las características de rendimiento 

y clasificación, y por último las conclusiones. 

 

2. METODOLOGÍA 

 

La metodología propuesta, basada en investigación 

aplicada, se orienta a establecer una base de datos en 

condiciones reales de conducción con diferentes 

conductores. Dado que el estado del arte reporta 

resultados de arquitecturas basadas en CNN como 

las ResNet o YOLO, se propone una arquitectura 

propietaria CNN para comparación. A su vez con la 

misma base de datos se emplea transferencia de 

aprendizaje con la arquitectura ViT para obtener 

métricas de niveles de precisión, tiempo de 

inferencia, F1 score y recall y, derivado de la 

cantidad de parámetros de aprendizaje, el tamaño de 

la red que impacta el uso de memoria en una 

aplicación real. La tabla 1 ilustra las características 

de software y hardware empleadas. Finalmente se 

presentan los resultados conformados con alguno de 

los reportados para las arquitecturas ResNet y 

YOLO. 

 
Tabla 1: Configuración de software y hardware 

 

Software 

Entorno de 

programación 
MATLAB 

OS Windows 11 

Hardware 

CPU Intel core i9 2.3GHz 

GPU RTX 4080 

RAM CPU 24GB/GPU 12GB 

 

Para evaluar el rendimiento de las redes CNN y ViT 

en la identificación de estados relevantes para una 

conducción segura, se construyó una base de datos 

de usuarios en tres escenarios distintos. El primer 

escenario, denominado “normal”, representa la 

atención del conductor dirigida directamente hacia 

el volante y la vía. El segundo escenario, 

“distracción”, capta los momentos en los que los 

ojos del conductor se desvían, provocando una 

pérdida de concentración en el entorno. Por último, 

el estado de “sueño” se caracteriza porque el 

conductor tiene los ojos cerrados o la cabeza 

inclinada hacia abajo, lo que indica somnolencia o 

episodios de microsueño. Esta base de datos permite 

evaluar la eficacia con que cada red puede distinguir 

entre estas condiciones críticas para mejorar los 

sistemas de seguridad en la conducción. 

 

La Fig. 1 muestra parte de la base de datos utilizada, 

en la que aparecen los estados de sueño, distracción 

y conducción normal con diferentes usuarios al 

volante. La base de datos completa consta de 670 

imágenes de diez sujetos de prueba, que se 

dividieron en tres subconjuntos para el desarrollo 

del modelo: el 70% de las imágenes se utilizó para 

el entrenamiento, el 20% se destinó a la validación 

y el 10% restante se reservó para las pruebas. Esta 

distribución garantiza que los modelos se entrenen, 

ajusten y evalúen eficazmente con datos distintos. 

La base de datos se construye en un rango horario 

de iluminación día en la franja de 6 am a 6 pm, 

donde cada captura se realiza para una distribución 

balanceada de cada una de las tres clases 

establecidas, asegurando que la misma pose por 

usuario no se repitiese en la distribución de los 

subconjuntos. La diversa representación de usuarios 

en la base de datos ayuda a mejorar la generalización 

y solidez de los modelos cuando se aplican a 

escenarios de conducción del mundo real. 

 

 
Fig. 1. Extracto de la base de datos inicial 

 

En el caso de la red convolucional (CNN), se utiliza 

la arquitectura ilustrada en la Tabla 2. Allí se 

utilizan las siguientes referencias para la etapa de 

extracción de características, donde la estructura de 

cada núcleo de aprendizaje convolucional (N) tiene 

las siguientes notaciones: C convolución, B Lote de 

normalización, R para la unidad de rectificación 

lineal Relu, P para la capa de reducción de 

dimensionalidad pooling y para la etapa de 

clasificación FC como completamente conectada. El 

kernel de aprendizaje por núcleo de convolución (N) 

se compone de filtros cuadrados de lado L y 

cantidad de filtros D bajo la relación L/D en la Tabla 

2. A su vez se definen el tamaño de filtro de 

Maxpooling (M), el padding (P) y el paso o stride 
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(S), el paso de la operación de maxpooling se 

mantiene en 1. La etapa de clasificación empleo 

Dropout al 50% y funciones de activación lineal 

(RELU). 

 
Tabla 2: Arquitectura CNN 

 

Capa Estructura Kernel M/P/S 

N1 C-B-R 15/12 0/2/1 

N2 C-B-R-P 5/24 [3 2]/2/1 
N3 C-R-P 5/48 2/1/1 

N4 

N5 
N6 

N7 

C-R-P 

C-R-P 
C-R-P 

C-B-R 

3/48 

4/96 
4/96 

[3 4/192] 

2/1/1 

2/0/1 
2/0/1 

0/1/2 

   FC 1024-2048-3   

 

Para el caso de la red ViT pre-entrenada, esta se basa 

en aprendizaje por transferencia bajo el modelo 

presentado en [36] [37] [38]. Este modelo cuenta 

con 143 capas, donde la imagen de entrada se 

maneja en base a 16 patches y para la cual se realiza 

un ajuste fino en el entrenamiento de la red 

congelando las capas menos la capa de atención y 

modificando la capa de salida a las clases objetivo. 

Como función de activación se emplea el esquema 

GELU y Dropout del 10%. Se emplea una técnica 

de aumento de datos basada en rotación y reflexión 

de la base de datos inicial.  

 

Cada red se entrena con los parámetros finales que 

se muestran en la Tabla 3. Es importante destacar 

que el volumen de entrada se condiciona por la red 

ViT mediante transferencia de aprendizaje a una 

imagen cuadrada de 384 pixeles de lado. Se realiza 

un preprocesamiento en el redimensionamiento de 

las imágenes de la base de datos para mantener la 

relación de aspecto de la imagen original. 

 
Tabla 3: Parámetros de entrenamiento 

 

Parámetro CNN ViT 

Entrada 384x384x3 384x384x3 
Tasa de aprendizaje 0.00001 0.0001 

Épocas 80 50 

Mini lote 12 4 
Optimizador ADAM ADAM 

 

4. RESULTADOS 

 

Tras el proceso de entrenamiento, el gráfico de 

precisión indica inicialmente un rendimiento 

superior por parte de la red CNN, como se muestra 

en la Fig. 2. La CNN alcanza una precisión del 91%, 

superando significativamente a la ViT, que sólo 

alcanza una precisión del 64,4%, como muestra la 

Fig. 3. Esta notable diferencia pone de manifiesto 

una posible ventaja de la CNN en el aprendizaje de 

características clave en las primeras fases del 

entrenamiento. Los resultados sugieren que la 

arquitectura de la CNN es más adecuada para captar 

los patrones relevantes necesarios para esta tarea, 

mientras que la red ViT puede requerir un mayor 

ajuste o conjuntos de datos más grandes para 

mejorar su rendimiento. 

 

 
Fig. 2. Gráfica de entrenamiento inicial de la CNN  

 

 
Fig. 3. Gráfica de entrenamiento inicial de la ViT  

 

Sin embargo, al analizar la matriz de confusión de 

la red CNN (Fig. 4), es evidente que no discrimina 

bien entre las tres clases, eliminando la clase sueño, 

lo que se atribuye a que, dado el cambio de escala 

en la imagen, no es posible la identificación entre 

ojo cerrado y abierto. La Tabla 4 ilustra el 

desempeño obtenido por clase para lo cual la ViT 

exhibe un mejor comportamiento al identificar algo 

de cada clase. 

 

 
Fig. 4. Matriz de confusión inicial de la red CNN  

 
Tabla 4: Resumen validación por clase 

 

Clase CNN(%) ViT(%) 

Distracción 60 31 

Normal 31.1 23.4 

Sueño 0 10 
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Derivado de estos resultados se determina emplear 

un clasificador Haar para el reconocimiento facial 

[26], aplicado a cada imagen inicial, generando así 

un nuevo conjunto de imágenes para el 

entrenamiento. La Fig. 5 muestra un extracto de la 

base de datos actualizada, en la que la fila superior 

representa imágenes del estado de sueño, la fila 

central imágenes del estado de distracción y la fila 

inferior imágenes del estado de conducción normal. 

Este enfoque mejora el conjunto de datos 

centrándose en los rasgos faciales clave, lo que 

permite una clasificación más precisa de los estados 

del conductor. A continuación, la base de datos 

refinada se utiliza para entrenar modelos de 

detección de los estados del conductor, lo que 

mejora el rendimiento y la solidez del sistema. 

 

 
Fig. 5. Extracto de la base de datos de rostros 

 

Tras reentrenar las redes utilizando los mismos 

parámetros que figuran en la Tabla 3 y la base de 

datos de rostros, se obtuvo unos resultados de 

rendimiento con una precisión del 98.9% para la red 

CNN y del 87% para la red ViT. 

 

Las figuras 6 y 7 muestran los resultados de 

rendimiento de cada una de las redes. Estos 

resultados evidencian la mayor precisión de la CNN, 

mostrando su eficacia en la detección de los estados 

del conductor, mientras que la red ViT, aunque 

ligeramente menos precisa, sigue demostrando un 

gran rendimiento. Ambas redes resultan 

prometedoras en aplicaciones de supervisión de 

conductores, aunque la CNN personalizada 

demuestra ser más eficaz en este caso. 

 

 
Fig. 6. Gráfica de entrenamiento de la CNN con rostros  

 
Fig. 7. Gráfica de entrenamiento de la ViT con rostros 

 

La Fig. 8 muestra la matriz de confusión obtenida 

para la red CNN y la Fig. 9 la matriz de confusión 

obtenida para la red ViT. Estos resultados se tabulan 

en la Tabla 5 y evidencian la mejora en el resultado 

por cada clase para la CNN. Se observa una fuerte 

confusión en la CNN en la clase de distracción, 

principalmente con el sueño. Este comportamiento 

también es evidente en la ViT pero en mayor 

proporción, siendo esta clase la que genera la 

principal diferencia entre el reconocimiento de cada 

tipo de red. En el caso de la detección de conducción 

segura y sueño, ambas redes logran identificar un 

alto porcentaje de estas categorías, donde la CNN 

logra el 100% de reconocimiento, siendo 

fundamental. 

 

 
Fig. 8. Matriz de confusión CNN 

 

 
Fig. 9. Matriz de confusión ViT  
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Tabla 5: Resumen validación final por clase 

 

Clase CNN(%) ViT(%) 

Distracción 26.7 22.8 
Normal 30 26.2 

Sueño 42.2 38.1 

Precisión 98.9 87.1 
F1-score 98.9 82.2 

Recall 98.8 80.6 

 

La Tabla 6 permite evidenciar de forma gráfica los 

resultados de ambas redes. La red CNN presenta un 

sesgo de la clase de distracción y su confusión entre 

sueño y distracción. En cambio, el modelo ViT 

identificó correctamente cada clase sin dicha 

confusión. En particular, se probó una imagen que 

mostraba un bostezo pronunciado -ausente en el 

conjunto de datos de entrenamiento- y ambas redes 

la clasificaron sistemáticamente en la categoría de 

distracción. Este ejemplo pone de manifiesto la 

tendencia de la CNN a clasificar erróneamente 

comportamientos similares, mientras que el ViT 

demostró una mayor generalización. La 

coincidencia en la imagen del bostezo también 

subraya los retos que plantean los datos no vistos y 

las expresiones faciales ambiguas en las tareas de 

clasificación. 

 
Tabla 6: Resultados gráficos de validación 

 

Red Resultados 

CNN 

 

ViT 

 

 
De igual forma se analizaron condiciones extremas 

de operación del algoritmo que se pueden evidenciar 

en la Fig 10. Inclinaciones o giros laterales fuertes 

del rostro están delimitadas por la operación del 

clasificador Haar, para lo cual se condicionó la 

detección de la red al último valor reconocido a fin 

de evitar un falso estado de detección, tras 10 frames 

se genera una alarma como un cuarto estado 

denominado “no detección”. 

    

Se pueden evidenciar en la parte inferior de la Fig. 

10 algunos errores de detección en la clase de sueño 

que obedecen a aspectos como a una oclusión del 

ojo (parte izquierda inferior), aspecto fundamental 

para identificar este estado. O como lo evidencia la 

Fig. 9 respecto a la matriz de confusión, se presentan 

errores de detecciones en la clase distracción con la 

clase de sueño, donde en la Fig. 10 (parte derecha 

inferior), al estar mirando hacia abajo y verse 

parcialmente el ojo sin evidencia de la esclerótica, 

el sistema lo detecta como sueño. 

 

 
Fig. 10. Condiciones extremas de operación  

 

Los resultados muestran que la CNN, con sólo 30 

capas, es casi cinco veces más rápida que la ViT, 

que contiene 143 capas. Esta significativa diferencia 

pone de manifiesto la ventaja de la CNN en términos 

de velocidad y eficiencia computacional, lo que la 

hace más adecuada para aplicaciones en tiempo real. 

En cambio, aunque la red ViT ofrece una mayor 

precisión y una mejor generalización, tiene el costo 

de unos tiempos de procesamiento más lentos 

debido a su arquitectura más profunda y a unos 

requisitos computacionales más complejos con 

relación al entrenamiento como una GPU de al 

menos 12GB de RAM. 

 

Se realizó una prueba para evaluar el tiempo de 

inferencia de cada red y generar una idea de su 

impacto en un sistema en tiempo real y el número de 

frames (cuadros) por segundo al que debería operar 

el sistema de detección. Para el cálculo estimado del 

tiempo de la inferencia promedio se utilizó un 

conjunto de datos de 25 imágenes por clase, y los 

resultados se resumen en la Tabla 7, donde se puede 

concluir que la detección se podría dar máximo a 10 

fps empleando la red CNN, la ViT operaria muy 

lento para un sistema útil.  

 
Tabla 7: Tiempos de inferencia promedio  

 

Red Tiempo promedio de inferencia  FPS Max 

CNN 0.102725 10 

ViT 0.528490 2 
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Para un análisis cuantitativo se toman 2000 

resultados del nivel de confidencia de la detección 

de la CNN que se tabulan en la Tabla 8. Se puede 

inferir que la distribución de confianza por clase es 

muy alta para los estados normal y sueño y en menor 

grado para el estado de distracción, que presenta la 

variabilidad más alta con un 31%. Lo que determina 

que el sistema es muy seguro en las detecciones 

positivas de cada clase, presentando un percentil del 

75% con confianzas cercanas a 1 en la detección del 

sueño, el estado más crítico de los analizados por la 

red. 

 
Tabla 8: Estadísticas de validación final por clase 

 

Clase Distracción Normal Sueño 

Media 0.722 0.927 0.923 
Mediana 0.988 1 1 

Desviación estándar 0.315 0.224 0.2323 

Varianza 0.099 0.0503 0.0539 

 

Para validar la funcionalidad como una aplicación 

de detección de fatiga basada en las tres clases 

detectadas se emplearon 3 videos de tres usuarios 

con diferentes escenarios y duración. El algoritmo 

de detección del estado de conducción incluye un 

gráfico de alerta para controlar el estado del 

conductor a lo largo del tiempo. La Fig. 11 presenta 

el estado del conductor a lo largo de la ventana de 

observación, mostrando tres niveles distintos 

determinados por el resultado de la clasificación de 

la red. En concreto, un umbral de 10 corresponde a 

un estado de conducción normal, 50 indica un 

estado de distracción y 90 representa un estado de 

sueño. Cuando el sistema no detecta la cara del 

conductor, el valor del estado desciende a cero, 

señalando la ausencia de detección. Esta 

representación gráfica ayuda a visualizar las 

transiciones entre estados y destaca los momentos 

críticos en los que no se reconoce la cara del 

conductor, proporcionando información esencial 

para las intervenciones de seguridad y garantizando 

que se emitan alertas oportunas cuando aumenten 

los niveles de riesgo. 

 

 
Fig. 11. Gráfica de alerta de sueño 

Bajo el algoritmo aplicado se pueden obtener 

métricas de dominancia en la tarea de conducción, 

donde el estado de fatiga del conductor se determina 

mediante las ecuaciones (1), (2) y (3).  

 

𝐼𝑠 =
𝐹𝑠𝑢𝑒ñ𝑜

𝐹𝑡𝑜𝑡𝑎𝑙
                                   (1)          

𝐼𝑑 =
𝐹𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑐𝑖ó𝑛

𝐹𝑡𝑜𝑡𝑎𝑙
                             (2) 

 𝐼𝐹 =
𝐹𝑠𝑢𝑒ñ𝑜+𝐹𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑐𝑖ó𝑛

𝐹𝑡𝑜𝑡𝑎𝑙
                     (3) 

 

La Tabla 9 ilustra las métricas de dominancia en los 

videos de prueba en escenario real, estos resultados 

permiten inferir aspectos como que el conductor tres 

(video 3) conduce en estado de cansancio mayor 

tiempo, por lo que si se establecen pausas de 

recuperación para este conductor los tiempos 

deberían ser menores. 

 
Tabla 9: Métricas de dominancia de fatiga  

 

Video Sueño  Distracción Fatiga 

1 14.5 % 10% 27.4% 
2 22.31% 9.18% 31.50% 

3 16.8% 12.5% 44.3% 

 

5. CONCLUSIONES 

 

Se logra concluir en relación con los resultados de 

la precisión, F1-score y los tiempos de inferencia, 

que para la aplicación de detección de estados de 

conducción segura establecidos opera mejor una red 

CNN, la cual presenta un 11.8% mayor precisión en 

la clasificación que la ViT y con tiempos promedio 

de inferencia 5.14 veces menores en comparación 

con la ViT. 

 

Las métricas estadísticas por clase de la arquitectura 

CNN evidencian que la detección del estado más 

crítico correspondiente a sueño es fiable, donde el 

nivel de inferencia esta por encima de 0,95 para el 

90% de las detecciones. Si bien puede mejorar la 

detección del estado de distracción, su confusión 

con la clase de sueño sigue generando alertas de 

conducción que favorecen la respuesta del sistema 

propuesto.  

 

Como trabajo futuro se establece realizar la 

evaluación en función a bases de datos públicas, así 

como la posible integración de una arquitectura 

hibrida CNN-LSTM para validar resultados basados 

en información temporal y explorar variantes más 

ligeras de arquitecturas Vision-Transformers. 
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