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Resumen: Este documento presenta los resultados de comparar el entrenamiento de
arquitecturas de aprendizaje profundo aplicadas al desarrollo de sistemas de conduccién
segura. Se generan bases de datos con capturas de 670 imagenes de conductores en el
interior del vehiculo, que se dividieron en tres subconjuntos para el entrenamiento de dos
arquitecturas basadas en redes neuronales convolucionales (CNN) y redes transformers
para vision, el 70% de las imagenes se utiliz6 para el entrenamiento, el 20% se destiné a la
validacion y el 10% restante se reservO para las pruebas. Estas dos arquitecturas se
comparan con el fin de contrastar su capacidad en el reconocimiento de patrones en la
clasificacion de tres estados de conduccidn, estado normal, estado de distraccion y estado
de suefio. En ambos casos se evidencia la necesidad de focalizar el aprendizaje a fin de
mejorar el desempefio en el aprendizaje de las dos arquitecturas, para lo que se incluye una
etapa previa de segmentacion de caras mediante clasificador Haar, obteniéndose niveles de
precision del 98% para la CNN vy del 87% para la red Transformers, tiempos promedio de
inferencia de 0.1 y 0.52, Fl-score de 98.9% y 82.2%, y recall de 98.8% y 80.6%,
respectivamente, las métricas estadisticas por clase evidencian el alto grado de confianza
en el reconocimiento de cada clase. La comparativa se realiza en un equipo de computo con
procesador core i9 de 2.3GHz y 24GB de RAM, una GPU RTX 4080 de 12 GB de memoria,
bajo software de programacion MATLAB®.

Palabras clave: asistente de conduccion, redes neuronales convolucionales, deteccién de
somnolencia, clasificador Haar, conduccion segura, transferencia de aprendizaje, vision por
computador.

Abstract: This paper presents the results of comparing the training of deep learning
architectures applied to the development of safe driving systems. Databases were generated
with 670 images of drivers inside vehicles, which were divided into three subsets for
training two architectures based on convolutional neural networks (CNNs) and transformer
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networks for vision. 70% of the images were used for training, 20% for validation, and the
remaining 10% for testing. These two architectures were compared to assess their pattern
recognition capabilities in classifying three driving states, normal state, distracted state and
sleep state. In both cases, the need to focus the learning to improve the learning performance
of the two architectures is evident, for which a previous stage of face segmentation by
means of Haar classifier is included, obtaining accuracy levels of 98% for the CNN and
87% for the Transformers network with average inference times of 0.1 and 0.52 seconds,
F1 scores of 98.9% and 82.2%, and recall rates of 98.8% and 80.6%, respectively, the
statistical metrics for each class demonstrate a high degree of confidence in the recognition
of each class. The comparison was performed on a computer with a 2.3GHz Core i9
processor, 24GB of RAM, and an RTX 4080 GPU with 12GB of memory, using

MATLAB® programming software.

Keywords: driving assistant, convolutional neural networks, drowsiness detection, haar
classifier, safe driving, transfer learning, computer vision.

1. INTRODUCCION

En los ultimos afios, garantizar una conduccion
segura [1] se ha convertido en una preocupacion
fundamental debido al creciente ndmero de
accidentes de trafico en todo el mundo [2]. Los
sistemas avanzados de asistencia al conductor
(ADAS) vy los sistemas de monitorizacion del
conductor (DMS) [3] han surgido como soluciones
prometedoras para mejorar la seguridad vial
mediante la deteccion de signos de somnolencia,
distraccion o comportamiento de conduccion
inseguro. Con el rdpido avance del aprendizaje
profundo, las técnicas de visidn por ordenador han
desempefiado un papel central en la mejora del
rendimiento de estos sistemas. Entre los enfoques
mas destacados, dentro del estado del arte y
asociados a sistemas no invasivos como los
algoritmos de inteligencia artificial, se encuentran
las redes neuronales convolucionales (CNN), que
han demostrado un éxito notable en tareas basadas
en imagenes [4] [5], y las redes Transformers de
Vision (ViT), una arquitectura mas reciente que ha
mostrado resultados sobresalientes en diversas
aplicaciones de vision [6].

La seguridad vial se ha convertido en una de las
preocupaciones mundiales mas acuciantes de los
altimos afios [7]. Segun la Organizacion Mundial de
la Salud, los accidentes de trafico cobran
aproximadamente 1,35 millones de vidas cada afio,
y un nimero aln mayor de personas sufren lesiones
graves [8]. Uno de los principales responsables de
estos accidentes es el error humano, a menudo
causado por la somnolencia, las distracciones o los
comportamientos de riesgo al volante. Para hacer
frente a este reto, se han desarrollado tecnologias
avanzadas para supervisar el comportamiento del
conductor y detectar sefiales de conduccion
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insegura, con el objetivo de prevenir accidentes
antes de que se produzcan. Entre estas tecnologias,
los sistemas basados en visién por ordenador [9] han
recibido una atencién significativa debido a su
capacidad para procesar datos visuales en tiempo
real y proporcionar evaluaciones precisas del estado
del conductor.

En el campo de la visiobn por ordenador, el
aprendizaje profundo ha surgido como un enfoque
transformador que permite a los modelos aprender
patrones y caracteristicas complejas directamente a
partir de los datos basados en imagenes. Dos
arquitecturas lideres en este campo son las CNN y
ViT [10] [11]. Las CNN han sido la piedra angular
de las tareas de clasificacion de imagenes y
deteccion de objetos durante mas de una década,
demostrando un rendimiento impresionante en una
amplia gama de aplicaciones. Su extraccion
jerarquica de caracteristicas aprovecha la
conectividad local y el reparto de pesos, lo que las
hace  especialmente  adecuadas para el
procesamiento de imagenes y videos. Sin embargo,
las CNN tienen ciertas limitaciones, como su
dependencia de grandes conjuntos de datos
etiquetados y las dificultades para captar las
dependencias de largo alcance dentro de una
imagen.

En contraste, las redes ViT representan un enfoque
méas reciente que aplica la arquitectura de
Transformers, disefiada originalmente para tareas de
procesamiento del lenguaje natural, a problemas de
vision [12]. Las ViT dividen las imagenes en
parches y las procesan como secuencias, lo que
permite al modelo capturar el contexto global
mediante mecanismos de autoatencion. Este disefio
permite a las ViT superar algunas de las deficiencias
de las CNN, en particular a la hora de modelar
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relaciones de largo alcance 'y aprender
representaciones mas holisticas. Estudios recientes
han demostrado que los ViT pueden superar a las
CNN en varias pruebas de referencia de
reconocimiento de imagenes, siempre que se
entrenen con conjuntos de datos suficientemente
grandes.

Las investigaciones orientadas a los sistemas de
conduccion segura se centran en gran medida en las
tecnologias autbnomas, especialmente en tareas de
deteccion de objetos como el reconocimiento de
peatones y la evasion de obstaculos [13] [14]. Sin
embargo, la investigacion centrada en los sistemas
de seguridad orientados al conductor sigue siendo
muy relevante y continda avanzando. Estos
esfuerzos abordan &reas criticas como la supervision
de la sobriedad del conductor [15], la evaluacion del
comportamiento al volante mediante la deteccion de
desequilibrios 0 movimientos erraticos [16] v, lo
que es mas notable, la deteccién de signos de
somnolencia o suefio en el conductor [17], donde,
por ejemplo, para la deteccion del suefio se requiere
una clara identificacion de la apertura del ojo [18].

Aungue los sistemas autdnomos estan disefiados
para minimizar los errores humanos, los enfoques
centrados en el conductor siguen siendo cruciales
para mejorar la seguridad vial. Al supervisar
continuamente el estado fisico y cognitivo del
conductor, estos sistemas pueden proporcionar
alertas oportunas y ayudar a prevenir accidentes
causados por la fatiga, la distraccion u otros factores
humanos. En lugar de sustituir al conductor,
trabajan a su lado, ofreciéndole apoyo cuando lo
necesita y reduciendo los riesgos en la via. Cuando
se combinan, las tecnologias autonomas y las
estrategias centradas en el conductor crean un marco
de seguridad méas completo y eficaz. Este enfoque
integrado no sélo aborda los retos técnicos, sino que
también tiene en cuenta el elemento humano,
contribuyendo en dltima instancia a crear entornos
de conduccion mas seguros y fiables para todos los
que circulan por la carretera.

Se estan desarrollando nuevos modelos de
aprendizaje para mejorar la deteccion del suefio del
conductor, utilizando enfoques como las redes
hibridas [19] y la captura de sefiales
electroencefalogréficas (EEG) [20] [21]. El EEG
también se ha aplicado para detectar la fatiga del
conductor [22], a menudo combinado con métodos
avanzados de extraccion de caracteristicas como el
analisis wavelet [23] y ldgica difusa [24]. Mas
recientemente, los algoritmos de aprendizaje
profundo han demostrado un gran rendimiento en
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este ambito [25], trabajando con éxito tanto con
sefiales de EEG [26] como en la identificacion de
anomalias en el comportamiento o la trayectoria de
conduccidn [27]. Estos avances resaltan el creciente
papel del aprendizaje automatico y el procesamiento
de sefiales en la mejora de los sistemas de
supervision de conductores y de la seguridad vial en
general, con la limitante de requerir capturar las
sefiales EEG del paciente.

Entre los principales algoritmos de aprendizaje
profundo se encuentran las redes neuronales
convolucionales CNN [28], que también han
demostrado ser eficientes en la deteccion de
conductores con suefio con base en arquitecturas
ResNet [29] [30]. En este caso, existen modelos pre-
entrenados por transferencia de aprendizaje [31],
que utilizan arquitecturas CNN robustas como la red
YOLO [32], basadas en la identificacion ocular.

Los desarrollos expuestos han demostrado las
ventajas de las redes profundas en deteccion de
somnolencia, sin embargo, dichos trabajos implican
intervencion del humano (captura EEG) o
especificidad de la deteccidn ocular, lo cual delimita
sus aplicaciones en tiempo y escenarios reales.

Més recientemente en el estado del arte se utilizan
modelos de aprendizaje profundo como las redes de
memoria a corto y largo plazo [33] y para la
deteccion de imagenes estan ganando fuerza las
redes Transformers [34], que también se estan
empezando a validar en conduccién autbnoma como
la deteccidn de sefiales de trafico [35]. Sin embargo,
no es clara su ventaja frente a algoritmos CNN
orientados a deteccién de suefio en un entorno de
conduccién segura al momento de revision de la
literatura.

En linea con las investigaciones expuestas y las
ventajas de los algoritmos de aprendizaje profundo
para conduccion segura, este trabajo presenta una
comparacion entre una arquitectura de CNN y un
modelo pre-entrenado ViT [36] [37], para detectar
estados de conduccion clasificados como normal,
distraido o somnoliento. Al evaluar el rendimiento
de estos dos enfoques, el estudio contribuye al
estado del arte de los sistemas de monitorizacion de
conductores, aportando los tiempos de respuesta en
la inferencia de cada red en escenarios reales de
conduccidn, bajo sistemas no invasivos ni centrados
en el 0jo, lo que da méas generalidad al aprendizaje
del patrén de cansancio.

La comparacion pretende resaltar los puntos fuertes
y las limitaciones de cada modelo, sobre todo en lo
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que respecta a su solidez y capacidad de
generalizacion en diversas condiciones de
conduccion. Este analisis proporciona informacion
valiosa sobre qué arquitectura puede ser mas
adecuada para las aplicaciones del mundo real,
ayudando a informar sobre el desarrollo de sistemas
mas fiables y eficientes para mejorar la seguridad
del conductor y reducir los accidentes de trafico.

Este articulo se divide en cuatro secciones, la
introduccidén con una exposicion del estado del arte
y el objetivo de este trabajo. La metodologia, donde
se exponen las caracteristicas de la base de datos y
las arquitecturas utilizadas. El andlisis de resultados,
donde se muestran las caracteristicas de rendimiento
y clasificacion, y por ultimo las conclusiones.

2. METODOLOGIA

La metodologia propuesta, basada en investigacion
aplicada, se orienta a establecer una base de datos en
condiciones reales de conduccion con diferentes
conductores. Dado que el estado del arte reporta
resultados de arquitecturas basadas en CNN como
las ResNet o YOLO, se propone una arquitectura
propietaria CNN para comparacion. A su vez con la
misma base de datos se emplea transferencia de
aprendizaje con la arquitectura ViT para obtener
métricas de niveles de precision, tiempo de
inferencia, F1 score y recall y, derivado de la
cantidad de parametros de aprendizaje, el tamafio de
la red que impacta el uso de memoria en una
aplicacion real. La tabla 1 ilustra las caracteristicas
de software y hardware empleadas. Finalmente se
presentan los resultados conformados con alguno de
los reportados para las arquitecturas ResNet y
YOLO.

Tabla 1: Configuracién de software y hardware

Entorno de

Software  programacion MATLAB
0sS Windows 11
CPU Intel core i9 2.3GHz
Hardware GPU RTX 4080
RAM CPU 24GB/GPU 12GB

Para evaluar el rendimiento de las redes CNN y ViT
en la identificacion de estados relevantes para una
conduccion segura, se construyé una base de datos
de usuarios en tres escenarios distintos. EI primer
escenario, denominado ‘“normal”, representa la
atencion del conductor dirigida directamente hacia
el volante y la via. El segundo escenario,
“distraccion”, capta los momentos en los que los
ojos del conductor se desvian, provocando una
pérdida de concentracién en el entorno. Por Gltimo,
el estado de “suefio” se caracteriza porque el
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conductor tiene los ojos cerrados o la cabeza
inclinada hacia abajo, lo que indica somnolencia o
episodios de microsuefio. Esta base de datos permite
evaluar la eficacia con que cada red puede distinguir
entre estas condiciones criticas para mejorar los
sistemas de seguridad en la conduccidn.

La Fig. 1 muestra parte de la base de datos utilizada,
en la que aparecen los estados de suefio, distraccion
y conduccién normal con diferentes usuarios al
volante. La base de datos completa consta de 670
imagenes de diez sujetos de prueba, que se
dividieron en tres subconjuntos para el desarrollo
del modelo: el 70% de las imagenes se utiliz6 para
el entrenamiento, el 20% se destiné a la validacion
y el 10% restante se reservo para las pruebas. Esta
distribucion garantiza que los modelos se entrenen,
ajusten y evallen eficazmente con datos distintos.
La base de datos se construye en un rango horario
de iluminacién dia en la franja de 6 am a 6 pm,
donde cada captura se realiza para una distribucion
balanceada de cada una de las tres clases

establecidas, asegurando que la misma pose por
usuario no se repitiese en la distribucion de los
subconjuntos. La diversa representacion de usuarios
en la base de datos ayuda a mejorar la generalizacion
y solidez de los modelos cuando se aplican a
escenarios de conduccion del mundo real.

Fig. 1. Extracto de la base de datos inicial

En el caso de la red convolucional (CNN), se utiliza
la arquitectura ilustrada en la Tabla 2. Alli se
utilizan las siguientes referencias para la etapa de
extraccion de caracteristicas, donde la estructura de
cada nucleo de aprendizaje convolucional (N) tiene
las siguientes notaciones: C convolucion, B Lote de
normalizacion, R para la unidad de rectificacion
lineal Relu, P para la capa de reduccion de
dimensionalidad pooling y para la etapa de
clasificacion FC como completamente conectada. El
kernel de aprendizaje por nicleo de convolucion (N)
se compone de filtros cuadrados de lado L y
cantidad de filtros D bajo la relacion L/D en la Tabla
2. A su vez se definen el tamafio de filtro de
Maxpooling (M), el padding (P) y el paso o stride
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(S), el paso de la operacién de maxpooling se
mantiene en 1. La etapa de clasificacion empleo
Dropout al 50% y funciones de activacion lineal
(RELUV).

Tabla 2: Arquitectura CNN

Capa Estructura Kernel M/P/S
N1 C-B-R 15/12 0/2/1
N2 C-B-R-P 5124 [32]/211
N3 C-R-P 5/48 2/1/1
N4 C-R-P 3/48 2/1/1
N5 C-R-P 4/96 2/0/1
N6 C-R-P 4/96 2/0/1
N7 C-B-R [34/192] 0/1/2

FC 1024-2048-3

Para el caso de lared ViT pre-entrenada, esta se basa
en aprendizaje por transferencia bajo el modelo
presentado en [36] [37] [38]. Este modelo cuenta
con 143 capas, donde la imagen de entrada se
maneja en base a 16 patches y para la cual se realiza
un ajuste fino en el entrenamiento de la red
congelando las capas menos la capa de atencién y
modificando la capa de salida a las clases objetivo.
Como funcion de activacion se emplea el esquema
GELU y Dropout del 10%. Se emplea una técnica
de aumento de datos basada en rotacion y reflexion
de la base de datos inicial.

Cada red se entrena con los pardmetros finales que
se muestran en la Tabla 3. Es importante destacar
que el volumen de entrada se condiciona por la red
VIiT mediante transferencia de aprendizaje a una
imagen cuadrada de 384 pixeles de lado. Se realiza
un preprocesamiento en el redimensionamiento de
las iméagenes de la base de datos para mantener la
relacion de aspecto de la imagen original.

Tabla 3: Pardmetros de entrenamiento

Parametro CNN ViT
Entrada 384x384x3  384x384x3
Tasa de aprendizaje 0.00001 0.0001
Epocas 80 50
Mini lote 12 4
Optimizador ADAM ADAM

4. RESULTADOS

Tras el proceso de entrenamiento, el gréfico de
precisién indica inicialmente un rendimiento
superior por parte de la red CNN, como se muestra
en la Fig. 2. La CNN alcanza una precision del 91%,
superando significativamente a la ViT, que s6lo
alcanza una precision del 64,4%, como muestra la
Fig. 3. Esta notable diferencia pone de manifiesto
una posible ventaja de la CNN en el aprendizaje de
caracteristicas clave en las primeras fases del
entrenamiento. Los resultados sugieren que la
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arquitectura de la CNN es mas adecuada para captar
los patrones relevantes necesarios para esta tarea,
mientras que la red ViT puede requerir un mayor
ajuste o conjuntos de datos mas grandes para
mejorar su rendimiento.

0 1000 2000 3000 4000 5000 8000 7000 000

Fig. 2. Gréfica de entreng}:ﬁ'iento inicial de la CNN

o
] 0 a0 0 00 1000 1200
taration

Fig. 3. Gréfica de entrenamiento inicial de la ViT

Sin embargo, al analizar la matriz de confusién de
la red CNN (Fig. 4), es evidente que no discrimina
bien entre las tres clases, eliminando la clase suefio,
lo que se atribuye a que, dado el cambio de escala
en la imagen, no es posible la identificacion entre
0jo cerrado y abierto. La Tabla 4 ilustra el
desempefio obtenido por clase para lo cual la VIiT
exhibe un mejor comportamiento al identificar algo
de cada clase.

Confusion Matrix

DISTRACTION 60.0% 0.0% 0.0%
4 14 o
7 NORMAL 8.9% 31.1% 0.0%
n
o
]
a
g 0 0 0 N
i N
SLEEP 0.0% 0.0% 0.0% Sl
- . NaN N.1%
i .08 NaNY 8.9%
. g 8
c?\d ?&' v
& * ’

&
Taraet Class
Fig. 4. Matriz de confusion inicial de la red CNN

Tabla 4: Resumen validacion por clase

Clase CNN(%) ViT (%)
Distraccion 60 31

Normal 311 23.4

Suefio 0 10
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Derivado de estos resultados se determina emplear
un clasificador Haar para el reconocimiento facial
[26], aplicado a cada imagen inicial, generando asi
un nuevo conjunto de imagenes para el
entrenamiento. La Fig. 5 muestra un extracto de la
base de datos actualizada, en la que la fila superior
representa imagenes del estado de suefio, la fila
central imagenes del estado de distraccion y la fila
inferior imagenes del estado de conduccién normal.
Este enfoque mejora el conjunto de datos
centrdndose en los rasgos faciales clave, lo que
permite una clasificacién mas precisa de los estados
del conductor. A continuacidn, la base de datos
refinada se utiliza para entrenar modelos de
deteccion de los estados del conductor, lo que
mejora el rendimiento y la solidez del sistema.

Fig. 5. Extracto de la base de datos de rostros

Tras reentrenar las redes utilizando los mismos
pardmetros que figuran en la Tabla 3 y la base de
datos de rostros, se obtuvo unos resultados de
rendimiento con una precision del 98.9% para la red
CNN y del 87% para la red ViT.

Las figuras 6 y 7 muestran los resultados de
rendimiento de cada una de las redes. Estos
resultados evidencian la mayor precision de la CNN,
mostrando su eficacia en la deteccion de los estados
del conductor, mientras que la red VIiT, aunque
ligeramente menos precisa, sigue demostrando un
gran  rendimiento. Ambas redes resultan
prometedoras en aplicaciones de supervision de
conductores, aunque la CNN personalizada
demuestra ser més eficaz en este caso.

Accuracy (%)

10 0 30 a0 50 &0 70 &0

o 800 1000 1500 2000 25m 3000 50 400 4500 5000
eration

Fig. 6. Grafica de entrenamiento de la CNN con rostros
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Fig. 7. Gréfica de entrenamiento de la ViT con rostros

La Fig. 8 muestra la matriz de confusién obtenida
para la red CNN vy la Fig. 9 la matriz de confusion
obtenida para lared ViT. Estos resultados se tabulan
en la Tabla 5 y evidencian la mejora en el resultado
por cada clase para la CNN. Se observa una fuerte
confusion en la CNN en la clase de distraccion,
principalmente con el suefio. Este comportamiento
también es evidente en la VIiT pero en mayor
proporcion, siendo esta clase la que genera la
principal diferencia entre el reconocimiento de cada
tipo de red. En el caso de la deteccion de conduccion
segura y suefio, ambas redes logran identificar un
alto porcentaje de estas categorias, donde la CNN
logra el 100% de reconocimiento, siendo
fundamental.

Confusion Matrix

24 1] 0 100%

DISTRACTION (s 0.0% 0.0% 0.0%

0 27 0 100%

@  NORMALI g 09 30.0% 0.0% 0.0%
(0
o
5
i

g 0 1 38 97 4%

SLEEP 0.0% 1.1% 42.2% 2.6%

100% 96.4% 100% 98.9%

0.0% 3.6% 0.0% 1.4%

£ S 3
S G &
< o K>
O =)
S
&
Target Class
Fig. 8. Matriz de confusion CNN
DISTRACTION 9 8

NORMAL 1

True Class
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Tabla 5: Resumen validacion final por clase

Clase CNN(%) ViT(%)
Distraccion 26.7 22.8
Normal 30 26.2
Suefio 42.2 38.1
Precision 98.9 87.1
F1-score 98.9 82.2
Recall 98.8 80.6

La Tabla 6 permite evidenciar de forma gréfica los
resultados de ambas redes. La red CNN presenta un
sesgo de la clase de distraccidn y su confusién entre
suefio y distraccion. En cambio, el modelo ViT
identificd correctamente cada clase sin dicha
confusién. En particular, se prob6 una imagen que
mostraba un bostezo pronunciado -ausente en el
conjunto de datos de entrenamiento- y ambas redes
la clasificaron sistematicamente en la categoria de
distraccion. Este ejemplo pone de manifiesto la
tendencia de la CNN a clasificar errGneamente
comportamientos similares, mientras que el ViT
demostr6 una mayor  generalizacién. La
coincidencia en la imagen del bostezo también
subraya los retos que plantean los datos no vistos y
las expresiones faciales ambiguas en las tareas de
clasificacion.

Tabla 6: Resultados graficos de validacién

Red Resultados

CNN

ViT

De igual forma se analizaron condiciones extremas
de operacidn del algoritmo que se pueden evidenciar
en la Fig 10. Inclinaciones o giros laterales fuertes
del rostro estan delimitadas por la operacién del
clasificador Haar, para lo cual se condiciond la
deteccion de la red al dltimo valor reconocido a fin
de evitar un falso estado de deteccion, tras 10 frames
se genera una alarma como un cuarto estado
denominado “no deteccion”.

Se pueden evidenciar en la parte inferior de la Fig.
10 algunos errores de deteccion en la clase de suefio
que obedecen a aspectos como a una oclusién del
o0jo (parte izquierda inferior), aspecto fundamental
para identificar este estado. O como lo evidencia la
Fig. 9 respecto a la matriz de confusién, se presentan
errores de detecciones en la clase distraccion con la
clase de suefio, donde en la Fig. 10 (parte derecha
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inferior), al estar mirando hacia abajo y verse
parcialmente el ojo sin evidencia de la esclerética,
el sistema lo detecta como suefio.

= L
Fig. 10. Condiciones extremas de operacion

Los resultados muestran que la CNN, con sdlo 30
capas, es casi cinco veces mas rapida que la ViT,
gue contiene 143 capas. Esta significativa diferencia
pone de manifiesto la ventaja de la CNN en términos
de velocidad y eficiencia computacional, lo que la
hace mas adecuada para aplicaciones en tiempo real.
En cambio, aunque la red ViT ofrece una mayor
precision y una mejor generalizacion, tiene el costo
de unos tiempos de procesamiento mas lentos
debido a su arquitectura mas profunda y a unos
requisitos computacionales mas complejos con
relacion al entrenamiento como una GPU de al
menos 12GB de RAM.

Se realiz6 una prueba para evaluar el tiempo de
inferencia de cada red y generar una idea de su
impacto en un sistema en tiempo real y el nimero de
frames (cuadros) por segundo al que deberia operar
el sistema de deteccion. Para el célculo estimado del
tiempo de la inferencia promedio se utilizd un
conjunto de datos de 25 imagenes por clase, y los
resultados se resumen en la Tabla 7, donde se puede
concluir que la deteccion se podria dar maximo a 10
fps empleando la red CNN, la ViT operaria muy
lento para un sistema util.

Tabla 7: Tiempos de inferencia promedio

Red Tiempo promedio de inferencia FPS Max
CNN 0.102725 10
ViT 0.528490 2
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Para un andlisis cuantitativo se toman 2000
resultados del nivel de confidencia de la deteccion
de la CNN que se tabulan en la Tabla 8. Se puede
inferir que la distribucion de confianza por clase es
muy alta para los estados normal y suefio y en menor
grado para el estado de distraccion, que presenta la
variabilidad mas alta con un 31%. Lo que determina
que el sistema es muy seguro en las detecciones
positivas de cada clase, presentando un percentil del
75% con confianzas cercanas a 1 en la deteccion del
suefio, el estado mas critico de los analizados por la
red.

Tabla 8: Estadisticas de validacion final por clase

Clase Distraccion  Normal Suefio

Media 0.722 0.927 0.923
Mediana 0.988 1 1

Desviacion estandar 0.315 0.224 0.2323

Varianza 0.099 0.0503 0.0539

Para validar la funcionalidad como una aplicacién
de deteccién de fatiga basada en las tres clases
detectadas se emplearon 3 videos de tres usuarios
con diferentes escenarios y duracion. El algoritmo
de deteccion del estado de conduccidn incluye un
grafico de alerta para controlar el estado del
conductor a lo largo del tiempo. La Fig. 11 presenta
el estado del conductor a lo largo de la ventana de
observacién, mostrando tres niveles distintos
determinados por el resultado de la clasificacion de
la red. En concreto, un umbral de 10 corresponde a
un estado de conduccion normal, 50 indica un
estado de distraccion y 90 representa un estado de
suefio. Cuando el sistema no detecta la cara del
conductor, el valor del estado desciende a cero,
seflalando la ausencia de deteccién. Esta
representacion grafica ayuda a visualizar las
transiciones entre estados y destaca los momentos
criticos en los que no se reconoce la cara del
conductor, proporcionando informacién esencial
para las intervenciones de seguridad y garantizando
que se emitan alertas oportunas cuando aumenten
los niveles de riesgo.

S Sleep detection alarm

80
70
80

50 ‘

state

40
30 |
20

0 50 100 150 200
time

Fig. 11. Grafica de alerta de suefio

Universidad de Pamplona
LI.D.T.A

69

RCTA

¥, Revista Colomblana de Tecnologfas de Avanzada %™
UNIPAMPLONA

Bajo el algoritmo aplicado se pueden obtener
métricas de dominancia en la tarea de conduccion,
donde el estado de fatiga del conductor se determina
mediante las ecuaciones (1), (2) y (3).

Fsuefio
=— 1
S Ftotal @
Fdistraccion

Ij =—— 2
d Ftotal ( )

Fsueio+Fdistraccion
Ip = (3)

Ftotal

La Tabla 9 ilustra las métricas de dominancia en los
videos de prueba en escenario real, estos resultados
permiten inferir aspectos como que el conductor tres
(video 3) conduce en estado de cansancio mayor
tiempo, por lo que si se establecen pausas de
recuperacion para este conductor los tiempos
deberian ser menores.

Tabla 9: Métricas de dominancia de fatiga

Video Suefio  Distracciéon  Fatiga
1 145 % 10% 27.4%
2 22.31% 9.18% 31.50%
3 16.8% 12.5% 44.3%

5. CONCLUSIONES

Se logra concluir en relacion con los resultados de
la precision, F1-score y los tiempos de inferencia,
gue para la aplicacién de deteccién de estados de
conduccidn segura establecidos opera mejor una red
CNN, la cual presenta un 11.8% mayor precisién en
la clasificacion que la ViT y con tiempos promedio
de inferencia 5.14 veces menores en comparacion
con la ViT.

Las métricas estadisticas por clase de la arquitectura
CNN evidencian que la deteccion del estado méas
critico correspondiente a suefio es fiable, donde el
nivel de inferencia esta por encima de 0,95 para el
90% de las detecciones. Si bien puede mejorar la
deteccion del estado de distraccion, su confusion
con la clase de suefio sigue generando alertas de
conduccidn que favorecen la respuesta del sistema
propuesto.

Como trabajo futuro se establece realizar la
evaluacidn en funcién a bases de datos publicas, asi
como la posible integracion de una arquitectura
hibrida CNN-LSTM para validar resultados basados
en informacion temporal y explorar variantes mas
ligeras de arquitecturas Vision-Transformers.
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