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Abstract: This article presents the development of a neural network-based model, trained with 

synthetic data, to replace the geometric inverse kinematics of a 2R planar robot. This approach 

aims to simplify the implementation of kinematics, reducing development time and 

computational resource usage. The model was created in Google Colab (Python) using 

TensorFlow/Keras, which facilitated its creation and training. Furthermore, the system 

integrates real-time image processing to recognize and follow contours, which the robot 

subsequently traces. A linear and vertical motion was implemented using a rack-and-pinion 

mechanism, enabling discontinuous tracing between contours of an image. The results, 

averaging three neural network models, show high accuracy in predicting the angles of the 

robot's first two joints, with an RMSE of 0.2293 and 0.0739 compared to the geometric inverse 

kinematics. 

 

Keywords: 2R robot, Raspberry Pi, inverse kinematics, neural networks, robotics. 

 

Resumen: Este artículo presenta el desarrollo de un modelo basado en redes neuronales, 

entrenado con datos sintéticos, para reemplazar la cinemática inversa geométrica de un robot 

planar 2R. Este enfoque busca simplificar la implementación de cinemáticas, reduciendo el 

tiempo de desarrollo y el uso de recursos computacionales. El modelo se creó en Google Colab 

(Python) utilizando TensorFlow/Keras, facilitando su creación y entrenamiento. Además, el 

sistema integra procesamiento de imágenes en tiempo real para reconocer y seguir contornos, 

los cuales el robot traza posteriormente. Se implementó un movimiento lineal y vertical 

mediante un mecanismo piñón-cremallera, permitiendo el trazo discontinuo entre los contornos 

de una imagen. Los resultados, promediando tres modelos de red neuronal, muestran alta 

precisión en la predicción de los ángulos de las dos primeras articulaciones del robot, con un 

RMSE de 0.2293 y 0.0739 respecto a la cinemática inversa geométrica. 
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1. INTRODUCTION 

In recent years, neural networks have empowered 

various engineering fields, including robotics, by 

providing innovative solutions to complex problems 

[1]. Their ability to model highly nonlinear systems 

and adapt to dynamic environments makes them 

important tools in a wide variety of cases [2]. One 

such application is Inverse Kinematics (IK) in serial 

configuration robots, where neural networks offer a 

promising alternative to traditional geometric and 

mathematical methods. 

Historically, inverse kinematics has been addressed 

using mathematical models that require complex 

equations and robot specific parameters [3], [4], [5], 

[6]. Although these methods are effective in 

standard situations, they present significant 

limitations when trying to adapt to custom 

configurations or highly dynamic environments, 

where variations in geometry or operating 

conditions require constant adjustments. In these 

cases, traditional methods may be ineffective or 

slow. Recent research has shown that machine 

learning models, and specifically neural networks, 

may be trained to efficiently handle these 

variabilities, providing fast and accurate solutions 

without the need to manually recalculate parameters 

for each robot configuration or condition, justifying 

their use in robotic applications that require high 

adaptability and autonomy [7], [8]. 

With advances in artificial intelligence, neural 

networks have established themselves as an 

effective alternative to face the challenges in 

robotics. Various studies have shown their impact 

on improving precision, adaptability and flexibility 

in robotic applications. For example, the article [9] 

presents a high precision method for palletizing 

tasks with a 3 DOF SCARA robot using recurrent 

neural networks. Likewise, in [10] it is 

demonstrated how these networks can interpret 

neurological signals to control robotic devices. 

Similarly, in [11] a feedforward neural network was 

used to solve the inverse kinematics of a three-link 

planar manipulator, achieving accurate trajectories 

even in complex configurations where traditional 

analytical methods are not feasible.  

Furthermore, in [12] a neural network based 

controller was developed that improves the tracking 

of repetitive trajectories by compensating for 

uncertainties in the robot model. This approach, 

combined with stability techniques based on the 

Lyapunov criterion, ensures precise and stable 

control without the need for constant adjustments. 

In the case of 2R planar robots, they stand out for 

their speed, precision and simplicity, making them 

ideal tools for tasks such as pattern tracing on flat 

surfaces, 2D laser cutting, educational 

experimentation in robotics and simple 

manipulations that do not require movements 

outside their work area. [13]. Similarly, approaches 

such as model assembly allow combining the 

strengths of various neural networks to improve 

performance, reducing errors and increasing 

robustness in prediction against untrained data [14]. 

In the context of machine learning, one of the most 

frequent problems is obtaining the data for training 

and validating the algorithm. Consequently, in 

recent years the use of synthetic data, obtained from 

sources other than physical measurements on the 

robot, has been growing. This work proposes the use 

of synthetic data for training a neural network to 

calculate the joint angles of a 2R robot for contour 

drawing tasks. 

The paper is structured in three sections: Section 2 

covers the methodology, including the development 

of the neural network, the kinematics (inverse and 

forward) and the image processing; Section 3 

presents the analysis of the results of the operation 

of the network in the different working modes and 

Section 4 presents the conclusions and possible 

future work. 

2. METHODOLOGY 

 

2.1. System Components and their Integration 

Fig. 1 presents the interconnection of the physical 

components that are integrated in this work, where 

a 2R robot designed in SolidWorks and printed in 

3D is observed. In addition, a Raspberry Pi 4B (8 

GB of RAM) [15] acts as the controller of the 2R 

robot, coordinating the interaction between the 

system components. The PCA9685 board whose 

control signal is acquired via I2C [16], is responsible 

for varying the angular position of the three 

servomotors through independent PWM channels 

with 12 bits of resolution each. Finally, a 5 MP 

camera captures images through real time video, for 

later processing.  

The Graphical User Interface (GUI) developed in Qt 

designer runs on the Raspberry Pi, which allows the 
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execution of two modes of operation: drawing a 

name of up to nine characters and outlining the 

contours of an image captured through the camera. 

The neural network model of inverse kinematics 

allows the desired trajectory to be carried out. The 

manipulation and supervision of the robot are 

carried out remotely, and the image processing is 

based on previous research in the area. [17], [18], 

[19]. 

 
Fig. 1. Interconnection of components. 

Source: Own elaboration. 

 

2.2. Multilayer Perceptron Neural Network 

(MLP) 

 

Multilayer Perceptron (MLP) neural network is a 

type of neural network composed of several layers 

(see Fig. 2), an input layer, one or more hidden 

layers and an output layer; each neuron is connected 

to those in the next layer, and information is 

propagated forward using nonlinear activation 

functions. 

 

 
Fig. 2. Multilayer Perceptron Neural Network.                                                                                 

Source: Own elaboration. 
 

The training of the MLP neural network is done 

using the backpropagation algorithm, which adjusts 

the weights of the connections to minimize the error 

between the outputs and the actual values. The 

output of each neuron in a perceptron is calculated 

using (1). 

 

(1) 

Where: 

 

● 𝑦: Output of the neuron. 

● 𝑥𝑖: Inputs of the neuron (with 𝑖 =
 1, 2, 3 , . . . , 𝑛). 

● 𝑤𝑖: Weights associated to each input 𝑥𝑖 

● 𝑏: Bias of the neuron. 

● 𝑓: Activation function applied to the weighted 

sum of the inputs. 

 

The development of the neural networks was carried 

out in Google Colab using the Python language, 

where a set of 9.872.164 data was created, of which 

70% of the data was used for training and 30% for 

model validation. This data set (see Fig. 3) was 

obtained from the simulation of the combined 

movement of the angles 𝜃1 and 𝜃2 every 0.001 

radians within the workspace, in order to obtain the 

X and Y positions (inputs of the neural network) 

with the MTH in (2). 

 

 
Fig. 3. Synthetic data in the 2R robot workspace. 

Source: Own elaboration. 

 

For the implementation of the neural network, the 

TensorFlow, SciPy and scikit-learn libraries were 

used. Table 1 shows the most relevant data used in 

the development of the neural network. 

 
Table 1: Neural network training parameters. 

 

Parameters Value 

Input variables 𝑋 and 𝑌 

Output variables 𝜃1 and 𝜃2 

Training Data 70% 
Validation Data  30% 

Optimizer Adam 

Activation Function Sigmoid 

Loss Function MSE 
Error Metric MAE 

Source: Own elaboration. 
 

2.3. Kinematics 

 

2.2.1. Forward kinematics 
 

Forward Kinematics (FK) through a Homogeneous 

Transformation Matrix (HTM) allows to determine 
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the position (translation) and orientation (rotation) 

of the Tool Center Point (TCP), with respect to the 

reference system (CS{0}), from the movements of 

the robot's joints. That is, given a set of angles, the 

coordinates and Euler angles (Roll, Pitch and Yaw) 

of the TCP are obtained. 

 

Fig. 4 shows the kinematic diagram of the SCARA 

robot, with the Coordinate Systems (CS) at each 

joint, taking into account that the system constants 

are the link lengths 𝑙1  and 𝑙2  are 10 cm, while 𝑙3  is 

2.5 cm; while 𝜃1 and 𝜃2 are variables from 0° to 

180°, likewise 𝑑3 varies from 0 cm to 2.5 cm. The 

first two joints are rotational and the third joint is 

prismatic, which varies the height of the end effector 

through a rack-and-pinion mechanism. 

 

 
Fig. 4. Schematic of the SCARA robot and its coordinate 

systems. 

Source: Own elaboration. 

 

The Denavit-Hartenberg (DH) method is used, 

which has a standard and systematic approach to 

describe the forward kinematics of serial 

configuration robots, allowing the modeling of joint 

movements through the assignment of coordinate 

systems in each joint and in the TCP [20]. In this 

way, the DH parameters are determined (see Table 

2). 

 
Table 2: DH method parameters. 

 

𝑖 𝜃𝑖 𝑑𝑖 𝛼𝑖 𝑎𝑖 

1 0 ℎ1 0 0 

2 𝜃1 0 0 𝑙1 

3 𝜃2 0 𝜋 
𝑙2 

4 0 𝑙3 + 𝑑3 0 0 

Source: Own elaboration. 

 

The symbolic MTH from CS{0} to CS{4} in (2) 

represents the position and orientation of the TCP of 

the robot in Fig. 3, for any value of 𝑙1, 𝑙2, 𝑙3, ℎ1, 𝜃1, 

𝜃2 and 𝑑3. 

 

(2) 

 

2.2.2. Inverse kinematics 

 

Inverse Kinematics (IK) calculates the movements 

of the robot joints for a desired TCP position and 

orientation. Fig. 5 shows the views of the SCARA 

robot, where the projection of the top view (see Fig. 

5a) of the rotational joints can be observed, which 

represent the angles 𝜃1 and 𝜃2 in the X, Y plane, 

and the projection of the side view (see Fig. 5b) 

shows the linear movement 𝑑3 of the prismatic joint. 

 

 
(a) Top view. 

 

 
(b) Side view. 

Fig. 5. SCARA robot views 

Source: Own elaboration. 

 

Through a geometric analysis of the top view of the 

2R robot in Fig. 5a, (3) and (4) were defined, which 

allow calculating the angles 𝜃1 and 𝜃2 [21]. 
Similarly, by analyzing the side view of the robot in 

Fig. 5b, (5) was obtained, which represents the 

vertical distance 𝑑3, corresponding to the prismatic 

joint of the SCARA robot. 

 

(3) 
 

(4) 
 

 (5) 
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2.4. Image processing 

 

To perform the image processing, two sections were 

delimited within the robot workspace, as presented 

in Fig. 6. The blue section is intended for writing 

alphanumeric characters (maximum 9), while the 

red section is used to delimit the maximum height 

and width dimensions of the image to be drawn. 

 

 
Fig. 6. Sections for alphanumeric characters and image tracing. 

Source: Own elaboration. 

 

From the captured image (e.g. Apple logo (see Fig. 

7a)), the image is binarized (see Fig. 7b), that is, it 

is converted to a black and white scale to simplify 

the analysis, since in this way only the intensity of 

the pixels is considered instead of working with 

multiple color channels. For this process, the binary 

threshold is set with a minimum value of 117 and a 

maximum value of 255. Since the image will be 

taken in real time with a 5 MP camera, it is necessary 

to set the resolution to 1200 pixels wide to delimit it 

to the section intended for the contour drawing, 

keeping the height on a proportional scale to avoid 

distorting the image. 

 

 
(a) Original image.               (b) Binarized Apple image. 

Fig. 7. Apple logo.                                                                             

Source: Own elaboration. 

 

Subsequently, the image contours are identified, 

both internal and external, and the coordinates of 

each of the contours obtained are extracted. In the 

case of the Apple image, two contours were 

identified. Finally, each of the coordinates obtained 

in the previous step is divided by 100 to scale the 

image and therefore, it is adjusted for the red section 

of Fig. 6, where the contours will be drawn, which 

are represented in Fig. 8. 

 

 
Fig. 8. Image scaled within the work area section. 

Source: Own elaboration. 

 

3. RESULTS 

 

Fig. 9 presents the physical assembly of the SCARA 

robot, highlighting the integration of the different 

components of Fig. 1, such as the camera, the 

Raspberry Pi 4, the computer with the GUI and the 

PCA9685 module. It is worth noting that, for the 

latter, a PCB was designed to simplify the 

connections between devices. The user selects one 

of the two operation modes through a GUI, which 

also presents the simulation of the SCARA robot, 

both modes use the model ensemble neural network 

approach that replaces the geometric inverse 

kinematics.  

 

 
 

Fig. 9. Interacción entre componentes y el Robot SCARA. 

Source: Own elaboration. 

 

After training the neural network models, an 

iterative method was implemented that consisted of 

performing several tests to determine the best 

combination of parameters taking into account the 

performance of the models. Table 3 presents the 

RMSE errors of neural network models for different 

numbers of neurons, number of hidden layers and 

epochs, obtaining the ensemble model as the best 

result. 
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Table 3: Parameters of the final model of the Neural Network. 

 

No. Model Neur. Layers Ep. Error 

 (RMSE) 

 

1 

 

Model 1 

 

150 

 

1 

 

90 
𝜃1

= 1.6086  

𝜃2

= 0.3717  
 

2 

 

Model 2 

 

200 

 

2 

 

77 
𝜃1

= 0.4204  

𝜃2

= 0.3072  
 

 

3 

Ensemble 

model 3.1 

 

200 

 

2 

 

77 

 

𝜃1

= 0.2293  

𝜃2

= 0.0739 

Ensemble 
model 3.2 

 
210 

 
2 

 
33 

Ensemble 

model 3.3 

 

250 

 

2 

 

80 

Source: Own elaboration. 

 

Fig. 10 shows the X and Y positions of the Apple 

logo generated by each of the neural network 

models compared to geometric inverse kinematics, 

thereby graphically demonstrating that model 3 is 

the closest to geometric inverse kinematics. 

 

 
Fig. 10. Trajectories of geometric inverse kinematics vs neural 

network models for the Apple logo. 
Source: Own elaboration. 

 

Fig. 11 presents the comparison of 𝜃1 and 𝜃2 

calculated by geometric inverse kinematics [22] 

with the angles (𝜃1 and 𝜃2) obtained with the three 

neural network models, for each of the 410 points 

(positions in X and Y) that make up the contours of 

the Apple logo. Likewise, Fig. 11 shows the 

behavior of each of the three neural network models 

with respect to geometric inverse kinematics, where 

it is evident that the angles (𝜃1 and 𝜃2) of model 3 

are the ones that best follow the behavior of 𝜃1 and 

𝜃2 of geometric inverse kinematics. 

 

 
Fig. 11. Geometric inverse kinematics vs neural network 

models for the Apple logo. 

Source: Own elaboration. 
 

Considering Table 3 and Fig. 11, it was determined 

that the best model of the neural network is model 

3, an ensemble model that averages three models. 

This approach provides a greater generalization 

capacity, thus outperforming individual models. It 

was also shown that increasing the number of 

hidden layers, instead of simply increasing the 

number of neurons, contributed significantly to 

improving the performance of the network, since it 

was possible to reduce the RMSE error. For this 

reason, this model was selected to be implemented 

in the estimation of 𝜃1 and 𝜃2 in the 2R robot. 

 

3.1. Mode 1: Name writing 

 

Fig. 12 shows the GUI in the writing mode of a 

string of up to nine characters, in which it is 

observed that the name entered is "NICOLAS", also 

showing the simulation of the robot for the trace of 

said name. 

 

 
Fig. 12. Entering the name and simulation in the GUI. 

Source: Own elaboration. 
 

Fig. 13 shows a significant detail for perform a 

cleaner and more orderly writing of a string, and it 

is the discontinuous trace of the name, that is, the 

spaces between the letters, which is the result of the 

linear and vertical movement of the prismatic joint 

that performs the tasks of raising and lowering the 

pencil in the transitions between characters. This 

behavior is evidence of the operation of the rack-

and-pinion mechanism. 
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Fig. 13. Writing the name NICOLAS with the physical SCARA 

robot. 

Source: Own elaboration. 

 

3.2. Mode 2: Image capture for drawing 

 

Fig. 14 shows the GUI in the camera image capture 

mode, where the captured image and the 

identification of the contours of the Apple logo are 

displayed. In addition, the simulation of the robot's 

movement in real time is observed. 

 

 
Fig. 14. Image capture and simulation in the GUI. 

Source: Own elaboration. 

 

Fig. 15 shows the final trace of the Apple logo, 

physically drawn by the robot. Therefore, the trace 

of images processed in real time by a camera was 

demonstrated, which shows flexibility to adapt to 

new positions within the workspace. However, it is 

important to highlight that the servomotors play an 

important role in the contours trace since the 

resolution of these actuators is not as expected, thus 

generating an error in the physical angles 𝜃1 and 𝜃2 

and for this reason the drawn logo has some 

imperfections in the trace. 

 

 
Fig. 15. Tracing the contours of the Apple logo with the 

physical SCARA robot. 
Source: Own elaboration. 

4. CONCLUSIONS 

 

The results obtained in this project showed that the 

use of a neural network for the prediction of the 

inverse kinematics of a 2R robot is an effective 

alternative because it has low RMSE errors. This 

method has the advantage for applications with 

robots of greater complexity and degrees of 

freedom, where the computational processing of the 

inverse kinematics increases considerably, as well 

as the singular positions of said robots. 

 

By implementing the entire system on a Raspberry 

Pi 4, a faster and more efficient operation of the 

robot, the camera and the GUI was achieved, since 

there are no latency times associated with serial 

communications. In addition, the Raspberry Pi 4 not 

only manages the GUI and the hardware, but also 

executes the neural network model, centralizing all 

operations on a single device. It is important to note 

that the neural network was trained with synthetic 

data generated to cover different points within the 

robot work area, which allowed the model to be 

trained effectively to solve geometric inverse 

kinematics tasks with great reliability. 

 

The camera integrated into the system showed 

satisfactory performance when capturing images 

from real time video, thereby successfully 

identifying contours. However, it is essential to 

consider lighting factors and filters when capturing 

the image, as these affect the quality of contour 

identification. In addition, it is essential to adjust the 

binary threshold parameters to correctly convert the 

image to black and white; this facilitates contour 

detection by highlighting areas of interest. It is 

important to calibrate these threshold values based 

on lighting conditions, to ensure accurate 

interpretation of all image details. 

 

With respect to the physical robot trace, some 

limitations were observed in the precision of the 

movements, partly due to the performance of the 

servomotors used. It was noted that linear 

movements are traced better in the physical robot 

compared to semicircular movements, which 

present greater difficulty in maintaining the desired 

precision and fluidity. To improve the quality and 

fluidity of the trace, it is advisable to consider 

replacing servomotors with Direct Current (DC) 

motors with position control, which would allow 

greater precision and smoothness in the robot's 

movements, thus obtaining a final drawing equal to 

that in the simulation. 
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