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Abstract: Considering that one of the challenges in material detection within the field of 

hyperspectral imaging, given its high dimensionality, is the identification of more 

computationally efficient methods, this article proposes a method for asbestos detection 

based on the use of the approximate components of the wavelet transform and spectral 

differential similarity. Variants of the proposed method were implemented using open-

source libraries, including Spectral, PyWavelets, NumPy, Pandas, and Matplotlib, 

achieving similar effectiveness in asbestos detection compared to the correlation-based 

method. Furthermore, in terms of computational efficiency, it was found that the three 

variants of the proposed method were more efficient than the correlation-based method, 

with the method based on the first component of the wavelet transform yielding the best 

results, being 13.964% more efficient. Based on these results, the variants of the proposed 

method can be considered as alternatives to conventional methods, allowing them to be 

integrated into systems for the analysis and monitoring of asbestos and other materials using 

hyperspectral images. Additionally, this study demonstrated the feasibility of using open-

source tools and libraries for material identification in hyperspectral images, making this 

research a reference point for research centers and universities to replicate and adapt these 

methods in remote sensing-based investigations.   

 

Keywords: Asbestos-cement, hyperspectral images, remote sensing, wavelet transform. 

 

Resumen: Considerando que uno de los desafíos en la detección de materiales en el campo 

de las imágenes hiperespectrales ante la alta dimensionalidad, es la identificación de 

métodos computacionales más eficientes, en este artículo se propone como contribución un 

método para la detección de asbesto basado en el uso de los componentes aproximados de 

la transformada wavelet y la similitud diferencial espectral. Las variantes del método 
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propuesto fueron implementadas mediante el uso de las librerías de código abierto: spectral, 

Pywavelets, numpy, pandas y matplotlib, obteniendo una efectividad similar en la detección 

de asbesto con respecto al método de la correlación. Así mismo, a nivel de la eficiencia 

computacional, se obtuvo que las tres variantes del método resultaron más eficientes que el 

método de la correlación, siendo el método basado en el primer componente de la 

transformada el que obtuvo los mejores resultados al ser 13.964% más eficiente. A partir 

de los resultados obtenidos, las variantes del método propuesto pueden ser consideradas 

como una alternativa a los métodos convencionales, de tal forma que pueden ser articuladas 

en sistemas de análisis y monitorización de asbesto y otros materiales a partir del uso de 

imágenes hiperespectrales.  Así mismo, este trabajo demostró la factibilidad del uso de 

herramientas y librerías de código abierto en la identificación de materiales en imágenes 

hiperespectrales, por lo que esta investigación puede ser tomada como punto de referencia 

que centros de investigación y universidades repliquen y adapten estos métodos en 

investigaciones basadas en sensado remoto.   

 

Palabras clave: Asbesto-cemento, imágenes hiperespectrales, sensado remoto, 

transformada wavelet. 

 

 

 

1. INTRODUCTION 

 

Remote sensing, also known as teledetection, can be 

defined as a technique aimed at acquiring 

information about the Earth's surface using sensors 

mounted on satellites, airplanes, and drones, 

through spectroscopic methods, that is, based on the 

interaction of electromagnetic energy with objects 

on the Earth's surface, allowing data collection 

without direct physical contact [1], [2], [3]. Remote 

sensing utilizes various regions of the 

electromagnetic spectrum, including visible light, 

infrared, and microwaves, with the purpose of 

recording the energy or reflectance emitted by the 

Earth's surface [4], [5]. Among the advantages of 

remote sensing is the significant reduction in time 

and cost associated with traditional terrestrial data 

collection methods, enabling the rapid acquisition of 

data over large areas, which is particularly 

beneficial for environmental monitoring and 

agriculture [3], [6]. 

 

One of the most widely used remote sensing 

techniques is hyperspectral imaging, which is based 

on the simultaneous acquisition of images in 

hundreds of narrow bands, enabling a detailed 

characterization of observed materials through the 

use of their unique spectral signatures [7], [8]. These 

images store data in three-dimensional structures 

known as datacubes, which contain spatial 

information (x, y) and spectral information (λ) 

associated with reflectance [9], [10]. In a 

hyperspectral datacube, each pixel has a complete 

spectrum or spectral signature that represents the 

light absorption and scattering properties of the 

material to which the pixel belongs [11]. While 

multispectral images capture data from up to ten 

spectral bands that are wider and non-contiguous, 

these bands are more limited compared to 

hyperspectral images, which capture reflectance 

data across tens to hundreds of narrow, contiguous 

spectral bands, providing a detailed spectrum for 

each pixel in the image [12], [13]. 

 

Regarding asbestos detection using hyperspectral 

images, various studies have been conducted. For 

instance, in [14], [15], hyperspectral images in the 

short-wave infrared range (SWIR: 1000–2500 nm) 

have been utilized to detect and classify asbestos 

materials such as amosite, crocidolite, and 

chrysotile in cement matrices, achieving high 

effectiveness with techniques like Principal 

Component Analysis (PCA) and Soft Independent 

Modeling of Class Analogies (SIMCA). Similarly, 

in [16], [17], supervised learning models based on 

Support Vector Machines (SVM) and Partial Least 

Squares Regression (PLSR) have been effectively 

employed for identifying asbestos-containing 

materials in construction and demolition waste, 

demonstrating their potential as a promising quality 

control strategy. Furthermore, in [18], a dynamic 

neural network model was developed to identify 

asbestos roofs using hyperspectral images in urban 

and rural areas covering up to 8,000 kilometers. 

Additionally, in [19], convolutional neural networks 

were applied to a dataset of hyperspectral images 

from Poland to identify fiber cement roofs, 

achieving an accuracy exceeding 90%. 

 

From the above, it is evident how machine learning 

models and neural networks have gained 

prominence due to their effectiveness in detecting 



ISSN: 1692-7257 - Volume 2 – Number 46 - 2025 
 

  

 
Universidad de Pamplona 
       I. I. D. T. A.  

70 

asbestos in hyperspectral images. Despite this, one 

of the challenges faced by these models in the 

context of hyperspectral images is the 

computational capacity required to process the 

considerable volume of data, resulting from the 

hundreds of spectral bands these images contain [8]. 

In the same vein, the complexity of machine 

learning models increases with the dimensionality 

of the data, which can lead to issues such as 

overfitting and the need for dimensionality 

reduction techniques [20], [21]. Thus, there is a need 

for alternative methods with lower complexity that 

demand fewer computational resources while 

achieving effectiveness comparable to that of 

widely used methods, such as those based on 

machine learning and correlation. 

 

This article proposes, as a contribution, an 

alternative mathematical method for the detection of 

asbestos-cement in hyperspectral images, based on 

the use of the levels of the approximate components 

of the Haar wavelet transform and the spectral 

differential similarity method. The wavelet 

transform was employed to obtain a summarized 

version of both the spectral signature of asbestos-

cement and the signature of the various pixels in the 

image, which were then used to calculate the 

spectral similarity between the approximate 

components and determine the potential 

classification of an image pixel (asbestos or non-

asbestos). The wavelet transform enables the 

decomposition of a signal into components at 

different scales, with the approximation component 

being responsible for the global information of the 

signal [22]  and crucial in applications requiring a 

multiresolution representation of the signal [23]. 

The approximation component is obtained by 

applying a low-frequency filter to the original 

signal, resulting in a representation that preserves 

the essential information of the signal at a broader 

scale [24]. The process of decomposing the signal 

into its various components is performed 

hierarchically, allowing the signal to be analyzed at 

different levels of resolution  [25]. In this study, the 

first, second, and third hierarchical levels of the 

approximation component were utilized to evaluate 

the effectiveness of the proposed method. 

 

The proposed method, along with its different 

variants (different hierarchical levels of the 

transform), was evaluated against the correlation 

method, which is one of the most widely used 

approaches for material detection in the field of 

hyperspectral imaging [26]. It is worth mentioning 

that the proposed method was implemented using 

open-source libraries and technologies, such as 

Spectral, PyWavelets, NumPy, Pandas, and 

Matplotlib, enabling its extrapolation to academic 

and industrial contexts for the analysis and detection 

of asbestos and other materials in hyperspectral 

images. Given the results obtained in terms of 

effectiveness and efficiency, the method can be 

integrated into automated systems for the detection 

of various types of materials. Finally, this method is 

of significant relevance in the context of Colombia, 

as it facilitates asbestos detection and the 

prioritization of interventions in specific urban 

areas, considering the health impacts of asbestos, 

including pulmonary diseases such as asbestosis and 

mesothelioma [27], [28], [29]. 

 

The remainder of the article is organized as follows: 

Section 2 presents the methodological phases 

considered for the development of this research. 

Section 3 details the results obtained, including, in 

the first instance, the determination of the first three 

levels of the approximate components of the wavelet 

transform associated with the spectral signature of 

asbestos cement. This section also includes the 

implementation and evaluation of the three methods 

(one for each component) using sample pixels of 

asbestos and non-asbestos, aiming to identify the 

minimum detection thresholds for asbestos for each 

component. Similarly, using the thresholds 

identified for each component, this section presents 

the application of the three methods to the complete 

image to determine the percentage of asbestos 

detected by each method. Additionally, this section 

evaluates the effectiveness and efficiency of each 

method compared to the correlation method. 

Finally, Section 4 presents the conclusions and 

future work derived from this research. 

 

2. METHODOLOGY 

 

For the development of this research, five 

methodological phases were defined as follows: P1. 

Selection of sample pixels for asbestos and other 

materials, P2. Determination of the characteristic 

pixel for asbestos, P3. Implementation and 

evaluation of the method variants using asbestos and 

other material pixels, P4. Application of the method 

variants to the reference image, and P5. Evaluation 

of the effectiveness and efficiency of the method 

variants compared to the correlation method. 
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Fig. 1. Methodology considered. 

Source: own elaboration. 

 

In Phase 1 of the methodology, a set of 75 asbestos 

pixels and 75 pixels from other materials were 

selected from a reference hyperspectral image of 

725x850 pixels, with 380 reflectance bands per 

pixel, corresponding to a representative area of the 

Manga neighborhood in the city of Cartagena de 

Indias. Thus, Figure 2 presents an RGB 

representation of the hyperspectral image, where the 

75 selected asbestos pixels are highlighted in green, 

and the 75 pixels from other materials are 

highlighted in blue. 

 

 
Fig. 2. Pixels selected from asbestos and other materials. 

Source: own elaboration. 

 

It is worth mentioning that these sample pixels were 

selected to identify the detection thresholds for each 

variant of the proposed method. In Phase 2 of the 

methodology, the characteristic pixel for asbestos-

cement was determined by calculating the band-by-

band average of the normalized reflectance of the 75 

sample pixels, resulting in the characteristic curve 

that enables the differentiation of asbestos from 

other materials. Accordingly, Figure 3 presents the 

normalized spectral curve of the 75 asbestos pixels 

and the characteristic pixel obtained from these 

sample pixels. 

 

 
Fig. 3. Characteristic spectral signature of asbestos-cement. 

Source: own elaboration. 

 

Once the characteristic spectral signature of 

asbestos-cement was obtained, Phase 3 of the 

methodology began with the calculation of the 

approximate components corresponding to the first 

three levels of the Haar wavelet transform. These 

components provide a summarized representation of 

the characteristic pixel, where each component of 

the transform represents a signature with half the 

number of bands of the previous level. Using each 

of the three summarized spectral signatures, an 

iteration was performed over the 75 asbestos pixels 

and 75 non-asbestos pixels. For each pixel, the 

corresponding wavelet transform at the level of the 

spectral signature used was calculated, and the 

spectral similarities between the approximate 

components of each pixel and the spectral signature 

were determined using spectral differential 

similarity. This process aimed to identify, for each 

signature, the minimum similarity percentage with 

asbestos pixels and the maximum similarity 

percentage with pixels of other materials. Thus, for 

the calculation of the wavelet transform of the 

characteristic pixel, as well as for each sample pixel 

at its different levels, an adaptation of Equation (1) 

was used, which corresponds to the first level of the 

approximate component. It can be noted that, since 

the Haar transform operates on consecutive pairs, 

the value of i in the equation varies up to 190, which 

is half of 380. 

 

𝐴𝑖 =
𝑟2𝑖−1 +  𝑟2𝑖 

√2
, 𝑖 = 1, . . ,190  (1) 

 

 

On the other hand, the similarity between the 

approximate components of the spectral signature 

and each pixel was calculated using Equation (2), 

which determines the percentage of spectral 

similarity between the components [30].  

 

𝑠𝑖𝑚 = 100 − 
∑ |𝑝𝑖𝑥𝑖 − 𝑝𝑖𝑥𝑝𝑟𝑜𝑚|𝑛

𝑖=1

𝑛
 𝑥 100  (2) 

 

Once the minimum similarity percentage with 

asbestos and the maximum similarity percentage 

with non-asbestos pixels were detected for each of 
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the three levels of the wavelet transform, Phase 4 of 

the methodology proceeded with the application of 

the three variants of the method to the complete 

image, obtaining in each case the percentage of 

asbestos pixels corresponding to the reference 

image.  

 

Finally, in Phase 5, the percentages obtained by each 

of the three variants of the method were compared 

with the percentage of asbestos detected using the 

correlation method, which has been widely applied 

in the detection of materials in hyperspectral 

images. Additionally, this phase included the 

evaluation of the efficiency of the three method 

variants in comparison to the correlation method. To 

achieve this, all four methods were executed a total 

of 100 times on a region of the reference image 

measuring 20x20 pixels, with each pixel containing 

380 reflectance bands. For each method, the average 

processing time for the image was obtained, and an 

effectiveness ranking was conducted, identifying 

the method with the best performance in terms of 

both effectiveness and efficiency relative to the 

correlation method. 

 

3. RESULTS AND DISCUSSION 

 

Firstly, in terms of results, the approximate 

components of the wavelet transform for the first 

three levels were obtained from the characteristic or 

average asbestos pixel (see Figure 3). These 

components are presented in Figure 4, along with 

the original spectral signature. From Figure 4, it is 

evident that the original spectral signature consists 

of 380 reflectance bands, which are halved with 

each of the three approximate components of the 

Haar wavelet transform. Thus, while the overall 

shape of the spectral signature is preserved, the first 

component contains 190 bands, the second 

component has 95 bands, and the third component 

consists of 48 bands. 

 

 
Fig. 4. First three levels of the approximate component. 

Source: own elaboration. 

 

As mentioned in the methodology, each of the first 

three components was used to evaluate the asbestos 

detection capability using the 75 asbestos pixels and 

the 75 non-asbestos pixels. For each of the three 

components, the minimum spectral similarity 

percentage with asbestos pixels and the maximum 

spectral similarity percentage with pixels of other 

materials were determined with respect to the 

corresponding summarized spectral signature. As an 

example, Figure 5 presents the detected thresholds 

for each level of the components of the Haar wavelet 

transform. 

 

 
Fig. 5. Minimum and maximum thresholds per component level. 

Source: own elaboration. 

 

According to the results presented in Figure 5, it can 

be observed that, across the three different levels of 

the approximate component, there are no overlaps 

between the minimum similarity percentage with 

asbestos and the maximum similarity percentage 

with other materials. Furthermore, it is evident that 

as the component level increases, or the spectral 

signature of asbestos becomes more summarized, 

the minimum detection percentage decreases, and 

the difference between the two thresholds increases. 

Thus, while the difference between the thresholds 

for the first-level component is 0.01, it increases to 

0.019 for the third-level component. 

 

Once the thresholds for the three variants of the 

method were identified, the next step was to apply 

them to the entire reference image. For each pixel in 

the image, the respective level of the approximate 

component was computed for each method, and its 

similarity to the spectral signature associated with 

that level was determined. Each pixel was then 

classified as asbestos or non-asbestos based on the 

threshold described in Figure 5. As an example, 

Figure 6 illustrates both the application of the 

method for the first component of the transform on 

the reference image and the resulting detection, 

where the detected asbestos pixels are highlighted in 
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blue. From the above, it is important to note that as 

the component level increases, while the recursive 

calculations also increase, there is a lower likelihood 

of the method misclassifying asbestos pixels as 

those of other materials. 

 

 
Fig. 6. Asbestos pixels detected for the first approximate 

component. 

Source: own elaboration. 

 

In the same manner as the method was applied using 

the first component on the complete image, it was 

adapted for the second and third components, 

adjusting the respective detection thresholds in each 

case. Thus, for each variant of the method, a 

percentage of asbestos detected across the entire 

image was obtained, which was then compared with 

the percentage of asbestos detected by the 

correlation method, following the determination of 

detection thresholds for that method. Accordingly, 

Figure 7 presents the implementation of the 

correlation method on the complete image, using a 

minimum detection threshold of 99.369% for 

correlation. 

 

 
Fig. 7. Asbestos pixels detected by the correlation method. 

Source: own elaboration. 

 

Similarly, Figure 8 presents the percentages of 

asbestos detected by each of the methods 

considered, in comparison with the correlation 

method. It can be observed that all four methods 

detect an asbestos percentage in the image close to 

10%, with the method based on the level 1 

component being the closest to the percentage 

detected by the correlation method, showing a 

percentage difference of 1.072%. Despite this, the 

largest difference from the correlation method is 

only 1.229% and corresponds to the method based 

on the level 3 component. Thus, it can be concluded 

that the three method variants, in terms of 

effectiveness, produce results consistent with the 

correlation method and can be considered viable 

alternatives. 

 

 
Fig. 8. Percentage of asbestos detected by each method. 

Source: own elaboration. 

 

To evaluate the efficiency of the three variants of the 

method compared to the correlation method, 100 

executions of the four methods were performed on a 

region of the reference image measuring 20x20 

pixels, each containing 380 reflectance bands. These 

evaluations were conducted using Python's timeit 

library in a standard cloud environment on Google 

Colab, with 12.67 GB of available RAM. For each 

method, the average processing time for the image 

region across 100 executions was calculated, with 

the results presented in Figure 9. 

 

 
Fig. 9. Processing time obtained by method.  

Source: own elaboration. 

 

According to the results presented in Figure 9, it can 

be observed that the processing times of the methods 

are similar, ranging from 0.191 ms to 0.222 ms, with 

all three methods based on different levels of the 

approximate component achieving better 

performance than the correlation method. 

Furthermore, it is evident that the method based on 

the first-level approximate component achieves the 

best processing time at 0.191 ms. By comparing the 

processing times of each method, it is possible to 

calculate the efficiency percentage relative to the 

correlation method, as shown in Figure 10. 
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Fig. 10. Efficiency of the methods compared to the correlation 

method. 

Source: own elaboration. 

 

According to the results shown in Figure 10, it can 

be observed that the method based on the first 

component of the Wavelet transform achieves the 

best results, with a 13.964% increase in efficiency. 

This can be explained by the fact that calculating a 

greater number of components involves additional 

recursive computations. However, given the 

efficiency and effectiveness results, any of the three 

methods considered can be regarded as a viable 

alternative to the correlation method. 

 

This article proposed a novel method for asbestos 

detection in hyperspectral images, based on the use 

of the first three levels of the approximate 

components of the Haar wavelet transform. The 

method demonstrated, through its different variants, 

a similar capability for detecting asbestos-cement 

and superior computational performance compared 

to the correlation method, which has been widely 

applied in material detection in hyperspectral 

images [26]. In this context, based on the efficiency 

results and considering the complexity of machine 

learning models for processing large-scale 

hyperspectral images [20], [21], the proposed 

method represents a suitable alternative for 

integration into systems for material detection and 

monitoring using hyperspectral images in urban 

areas. Finally, given the use of open-source libraries 

and technologies for the method's implementation 

and evaluation, this work demonstrates the 

feasibility of utilizing these technologies for 

material detection in hyperspectral images. This 

enables the replication of these methods and their 

variations in academic and industrial settings, 

addressing the high costs associated with 

proprietary tools for processing such images. 

 

4. CONCLUSIONS 

 

Driven by the need for more efficient methods with 

accuracy comparable to conventional approaches 

for material detection, specifically asbestos-cement, 

this study proposed a novel method for asbestos 

detection based on the levels of the wavelet 

approximation component and spectral differential 

similarity. The proposed method demonstrated 

effectiveness equivalent to the correlation method 

while achieving superior computational efficiency. 

Consequently, the proposed method can be 

considered a viable alternative for integration into 

systems for monitoring and tracking materials in 

hyperspectral images. 

 

When comparing the three variants of the proposed 

method, based on the first three approximate 

components of the wavelet transform, to the 

correlation method, it was found that the different 

variants detected a percentage of asbestos similar to 

that detected by the correlation method in the 

reference hyperspectral image. The largest 

difference from the correlation method was only 

1.229% and corresponded to the method based on 

the third component of the wavelet transform. 

Similarly, the variant with the smallest difference 

was the one based on the third component of the 

wavelet transform, with a percentage difference of 

1.072%. These results allow us to conclude that the 

method's variants can be considered a viable 

alternative to the correlation method for detecting 

asbestos and other materials. 

 

In terms of the computational efficiency of the 

implemented method variants, it was found that 

after performing 100 executions of these variants 

and the correlation method on a hyperspectral image 

of 20x20 pixels with 380 reflectance bands, the three 

variants demonstrated better efficiency than the 

correlation method, being between 10.360% and 

13.964% more efficient. Among these, the method 

based on the first component achieved the best 

results. This is due to the fact that calculating a 

greater number of components involves additional 

recursive computations. Thus, the method variants 

can be considered a viable alternative for processing 

large-scale hyperspectral images, such as those 

obtained through remote sensing in rural areas, 

where efficient processing of large data volumes is 

required. 

 

Based on the results obtained in this study, it can be 

concluded that the method based on the first 

component of the wavelet transform achieves 

detection effectiveness similar to that of the 

correlation method while being 13.964% more 

efficient. This makes it the best option to consider 

for asbestos-cement detection in hyperspectral 

images. It is worth noting that this method utilizes a 

spectral signature that, compared to the original, 
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reduces the number of bands by half, using 190 

bands instead of 380. 

 

For the development of this research, open-source 

libraries and technologies were utilized, proving 

effective for the processing and analysis of 

hyperspectral images in the context of asbestos-

cement detection. Specifically, the Spectral library 

facilitated access to the reflectance band data of the 

hyperspectral image as NumPy arrays; the 

PyWavelets library enabled the determination of the 

Haar wavelet transform components for both the 

spectral signature of asbestos and the image pixels; 

the NumPy library supported the handling of 

reflectance data from the image and the 

implementation of the spectral differential similarity 

method; the Pandas library allowed for the loading 

of coordinates corresponding to the 75 asbestos 

sample pixels and the 75 pixels from other 

materials; and the Matplotlib library facilitated the 

generation of graphs associated with the original 

spectral signature of asbestos and its summarized 

version (derived from the transform components). 

These libraries can thus be highly valuable for 

replicating the experiments conducted in this study 

or for detecting other materials in hyperspectral 

images, especially given the high costs associated 

with proprietary software typically used for 

analyzing such images. 

 

As future work derived from this research, the 

proposed methods will first be evaluated for 

detecting various materials in environmental 

contexts, such as vegetation, water bodies, and 

others. Additionally, a new experimental dataset 

will be developed based on the summarized spectral 

signatures of a representative sample of pixels from 

the reference image, utilizing the wavelet transform. 

Using this new dataset, the aim is to assess the 

effectiveness and efficiency of machine learning-

based methods for asbestos detection. 
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