
ISSN: 1692-7257 - Volume 1 – Number 45 - 2025 
 

  

 
University of Pamplona 
       I. I. D. T. A.  

82 

 

 

 

Detection of flight trajectory anomalies using 

autoencoders and Voronoi-based airspace segmentation 
 

Detección de anomalías en trayectorias de vuelo utilizando autoencoders y 

segmentación del espacio aéreo basada en regiones de Voronoi 
 

 

MSc. José David Ortega Pabón 1, PhD. Jimmy Anderson Flórez Zuluaga 2 

MSc. Mónica Patricia Hernández Lordui 3 

 
1 Universidad Pontificia Bolivariana, Escuela de ingenierías, Doctorado en ingeniería,, Medellín, Antioquia, Colombia. 

2 Institución Universitaria de Envigado, Facultad de ingeniería, Grupo de Investigación Tecnologías Emergentes Sostenibles e 

Inteligentes - GITESI, Envigado, Antioquia, Colombia.
  

3 University of Massachusetts Amherst, Manning College of Information & Computer Sciences, Master of Science in Computer 

Science, Amherst, Massachusetts, EEUU. 
 

Correspondence: jose.ortega@fac.mil.co 

 

Received: september 30, 2024. Accepted: december 17, 2024. Published: january 01, 2025. 
 

 
 

How to cite: J. D. Ortega Pabón, J. A. Flórez Zuluaga, and M. P. Hernández Lordui, “Detection of flight trajectory anomalies using 

autoencoders and Voronoi-based airspace segmentation”, RCTA, vol. 1, no. 45, pp. 82–90, jan. 2025.  

Recovered from https://ojs.unipamplona.edu.co/index.php/rcta/article/view/3496 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial 4.0 International License. 

 

 
 

 

Abstract: Given the increasing global air traffic, this article compares two autoencoder 

approaches for anomaly detection in flight trajectories, using the DBSCAN algorithm as an 

initial reference. The first model utilizes normalized continuous features (latitude, longitude, 

speed, and heading), while the second incorporates a discrete segmentation of the airspace 

through Voronoi regions, alongside kinematic variables. The results indicate on average 

96% accuracy for the continuous autoencoder and 97% for the Voronoi-based model, with 

the latter showing a greater ability to identify normal trajectories. Qualitative analysis 

revealed that autoencoders, by including additional variables, capture more complex 

anomalies than DBSCAN. The integration of Voronoi regions improved the model's 

explainability, facilitating the interpretation of anomalies within their geographic context. 

 

Keywords: anomaly detection, autoencoder, machine learning, unsupervised learning, 

voronoi regions. 

 

Resumen: Dado el creciente tráfico aéreo mundial, este articulo compara dos enfoques de 

autoencoders para la detección de anomalías en trayectorias aéreas, empleando el algoritmo 

DBSCAN como referencia inicial. El primer modelo utiliza características continúas 

normalizadas (latitud, longitud, velocidad y rumbo), mientras que el segundo incorpora una 

segmentación discreta del espacio aéreo mediante regiones de Voronoi, además de las 

variables cinemáticas. Los resultados indican una precisión para la detección de anomalías 

en promedio del 96% en el autoencoder continuo y del 97% en el modelo basado en 

Voronoi, con este último mostrando una mayor capacidad para identificar trayectorias 

normales. El análisis cualitativo demostró que los autoencoders, al incluir variables 

adicionales, capturan anomalías más complejas que DBSCAN. La integración de Voronoi 

mejoró la explicabilidad del modelo, facilitando la interpretación de las anomalías en su 
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contexto geográfico. 

 

Palabras clave: detección de anomalías, autoencoder, machine learning, aprendizaje no 

supervisado, regiones de voronoi. 

 

 

 

1. INTRODUCTION 

 
The constant increase in global air operations, as 

observed in the data collected by Flightradar24 (see 

Fig. 1), places an increasing burden on air traffic 

control systems, which must ensure operational 

safety and efficiently manage airspace. As the 

volume of flights continues to rise, the 

implementation of automated systems to assist in 

decision-making becomes crucial to maintaining 

safety and efficiency levels. 

 

In this context, the detection of deviations in typical 

aircraft trajectory characteristics, known as 

anomalies, can compromise the safety of air 

operations. Anomalies can arise due to various 

causes, such as adverse weather conditions [1], [2], 

technical failures, or human errors. Additionally, 

detecting these deviations can help reduce 

environmental impact by identifying irregularities 

that may increase fuel consumption and emissions 

of harmful gases [3]. 

 

 
Fig. 1. Global flights 2020–2024, data from Flightradar24. 

Source: own elaboration. 
 

Additionally, early identification of anomalies can 

optimize the logistical costs associated with air 

operations. Anticipating deviations or delays allows 

for adjustments in ground management, such as gate 

assignment, operational staff, and resource 

allocation, thereby improving operational efficiency 

and reducing costs [3]. 

 

An anomaly is defined as any significant deviation 

from an expected pattern. From a statistical 

perspective, anomalies can be interpreted as shifts in 

the probability distribution within the data [4]. 

However, this deviation from “normal” also 

depends on the context, such as external factors like 

weather phenomena, traffic congestion during peak 

seasons, etc. Moreover, the low frequency of 

anomalous events in historical data poses another 

challenge. Nevertheless, the adoption of machine 

learning algorithms has enhanced the ability to 

detect anomalies in real-time across various 

industries and sectors [5], [6]. 

 

In aviation, an anomaly may refer to deviations in 

flight path, speed, altitude, or aircraft heading, 

among other available data. Various studies have 

addressed this topic using techniques such as 

autoencoders [7], [8], [9], [10], [11], generative 

adversarial networks (GANs) [8], support vector 

machines [3], and unsupervised algorithms like K-

means [12], DBSCAN [13], and Isolation Forest [7], 

applied to different flight phases: takeoff, cruise, 

and landing. 

 

The use of machine learning models facilitates a 

proactive safety approach by anticipating critical 

problems. This contrasts with traditional reactive 

approaches, where corrective measures are 

implemented only after an incident has occurred. 

Risk anticipation improves both safety and 

efficiency in air operations. 

 

This article proposes a comparison and evaluation 

of two autoencoder-based approaches aimed at 

improving the accuracy of anomaly detection during 

the cruise phase of flight routes. The first approach 

works with continuous features, such as latitude, 

longitude, speed, and heading. The second approach 

uses a discrete representation of the airspace through 

Voronoi regions [14], along with continuous 

features of speed and heading. The main hypothesis 

of this article is that, by comparing both models 

quantitatively and qualitatively, the use of discrete 

Voronoi regions will provide a more compact and 

efficient representation of the airspace, enabling the 

detection of anomalies with comparable or even 

superior accuracy. 

 

Furthermore, the Voronoi region-based approach 

enhances model explainability by allowing analysis 

of expected behavior within each specific region and 

how detected anomalies differ. This approach 

enables local interpretation of deviations, 
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facilitating the identification and understanding of 

anomalous patterns, thereby improving operators' 

decision-making capability by providing a clear and 

precise visualization of where and how potential 

anomalies occur within the airspace. 

 

The rest of the article is organized as follows: 

Section 2 describes the methodological phases used 

for the development of the research, including the 

algorithms employed and input data. Section 3 

presents the results obtained, where anomaly 

detection approaches based on autoencoders are 

compared. Finally, Section 4 presents the 

conclusions and proposes future research directions 

related to improving the models. 

 

2. METHODOLOGY 

 

In this section, the methodology used for detecting 

anomalies in flight trajectories through a 

comparative approach of two autoencoders is 

described. As shown in Fig. 2, the methodological 

process begins with the preprocessing of flight data, 

followed by the identification of reference 

anomalies ("ground truth") using the DBSCAN 

algorithm, which classifies trajectory detections as 

normal or anomalous based solely on the spatial 

characteristics of latitude and longitude. 

 

 
Fig. 2. Methodology for anomaly detection. Source: own 

elaboration. 

 

Based on this classification, the autoencoders are 

trained exclusively with detections labeled as 

normal by DBSCAN. This allows the autoencoders 

to learn the typical behavior of flight trajectories to 

subsequently identify significant deviations that 

could represent anomalies. 

 

The methodology is divided into two approaches: 

the first employs normalized continuous features 

(latitude, longitude, speed, and heading) to detect 

anomalies, while the second uses a discrete 

representation of the airspace through Voronoi 

regions, in addition to normalized speed and 

heading. Both approaches are evaluated and 

compared in terms of accuracy and anomaly 

detection capability, both quantitatively and 

qualitatively. 

 

2.1. Database and Preprocessing 

 

The database used consists of 120 flight trajectories 

of commercial flights on the Bogotá-San Andrés 

route, which connects El Dorado International 

Airport with Gustavo Rojas Pinilla International 

Airport. These data, retrieved from Flightradar24, 

cover the months of July and August 2024. Each 

flight is represented by a trajectory, which consists 

of a set of points recorded throughout the flight. 

These points, referred to as detections, capture 

information about the aircraft's position (latitude 

and longitude) and its kinematic behavior (altitude, 

speed, and heading). 

 

The Bogotá-San Andrés route is one of the longest 

in Colombia, with an average duration of 90 

minutes, which entails greater risks in the event of 

deviations or anomalies, as they can increase fuel 

consumption and emissions, in addition to 

compromising operational safety. The analysis 

focuses on the cruise phase of the flight; for this 

purpose, detections recorded below 10,000 feet (ft) 

in altitude were filtered out, as the takeoff and 

landing phases tend to introduce variations that do 

not accurately reflect the aircraft's behavior at stable 

altitude. 

 

For the development of the proposed methodology, 

latitude and longitude were selected to represent the 

aircraft's position, while heading and speed were 

used as kinematic features. Altitude was excluded 

from the analysis due to its high correlation with 

speed, with a Pearson coefficient of 0.87, suggesting 

that both variables convey similar information. 

Therefore, it was determined that including altitude 

would be redundant. 

 

2.2. Reference Anomalies (Ground Truth) with 

DBSCAN 
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To determine the ground truth of anomalies in flight 

trajectories, which will be used as a reference for the 

autoencoder algorithms in later stages, the 

DBSCAN algorithm (Density-Based Spatial 

Clustering of Applications with Noise) [15] was 

employed, using the implementation available in the 

scikit-learn library. This algorithm clusters nearby 

points based on their spatial density and classifies as 

anomalies those points that are scattered or isolated 

from the main clusters. DBSCAN was applied to the 

latitude and longitude coordinates to identify 

geographical deviations in flight trajectories. 

 

In Fig. 3, a visualization of the results obtained with 

DBSCAN is presented. The green points correspond 

to detections classified as normal, while the red 

points represent the detected anomalies. 

Additionally, these anomalies will serve as a 

reference for evaluating the proposed models in the 

following stages. 

 

 
Fig. 3. Normal detections and anomalies in flight trajectories 

identified by DBSCAN. 

Source: own elaboration. 

 

The algorithm was configured with the following 

parameters: 

 

• 𝜖 (epsilon): A value of 0.083 degrees was 

set, which corresponds to approximately 5 

nautical miles, as the maximum radius 

within which two points are considered 

neighbors. This parameter controls the 

distance at which detections can belong to 

the same cluster. 

• min_samples: Set to 10, meaning that at 

least 10 points must be within the ϵ radius 

for a point to be part of a group or cluster. 

For a detection not to be classified as an 

anomaly, it must belong to a cluster, 

regardless of which one. If a point does not 

meet this criterion, it is classified as noise 

or an anomaly. 

 

2.3. Data Normalization 

 

Prior to training the autoencoders, a normalization 

process was conducted using standard Z 

normalization, implemented in scikit-learn. This 

step is crucial because variables such as latitude, 

longitude, heading, and speed are on different 

scales, which could introduce biases into the model, 

favoring features with larger ranges. By normalizing 

the data, all features are adjusted to a uniform scale, 

allowing the model to treat all variables in a 

balanced manner. 

 

Normalization adjusts each feature to have a mean 

of 0 and a standard deviation of 1, which is achieved 

using equation (1). 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑑𝑎 =
𝑥−𝜇

𝜎
  (1) 

 

Where 𝑥 is the original value of the feature, 𝜇 is the 

mean of that feature, and 𝜎 is the standard deviation. 

 

2.4. Association of Detections with Voronoi 

Regions 

 

To segment the airspace in the analysis of flight 

trajectories, Voronoi diagrams were used, following 

the methodology described in [14], which allows for 

spatial discretization by dividing the space into 

regions based on significant geodesic points, also 

known as generators. 

 

For the Bogotá-San Andrés route, Voronoi regions 

were generated using the algorithm available in the 

QGIS geographic information system, referencing 

the significant points of the upper ATS routes in 

Colombia [15]. This process segments the airspace 

into a set of non-overlapping polygons. 

 

As shown in Fig. 4, in areas of higher congestion, 

such as the center of the country around El Dorado 

Airport, there is a higher density of regions, 

reflecting the complexity of traffic management in 

these areas. 

 

Each detection recorded during the flight is 

associated with a specific Voronoi region through a 

containment operation. This process adds a new 

categorical attribute to the trajectory data, referred 

to as the Voronoi zone. 

 

The Voronoi zone attribute allows detections from 

multiple trajectories to be grouped, reducing the 
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continuous spatial complexity and facilitating the 

analysis of flight patterns. In this way, variability in 

trajectories is confined within a finite set of regions, 

simplifying the identification of anomalous patterns 

or significant deviations. 

 

Fig. 4 shows an example of how Voronoi regions are 

generated using the significant points of the upper 

routes in Colombia. 

 

 
Fig. 4. Voronoi regions generated with the upper routes in 

Colombia. 
Source: own elaboration. 

 

2.5. Encoding of Voronoi Regions 
 

Once each detection was associated with its 

corresponding Voronoi region, the categorical 

regions were encoded using the One-Hot Encoding 

technique, implemented with scikit-learn. Since 

autoencoders do not directly support categorical 

variables, it is necessary to transform the Voronoi 

regions into a binary format that the model can 

process. This encoding converts each region into a 

column where the values are 0 or 1, indicating 

whether a detection belongs to a specific region or 

not. 

 

Before performing the encoding, the most 

representative Voronoi regions for the Bogotá - San 

Andrés route was identified. For this purpose, a 

minimum threshold of 10 trajectories per region was 

set, so only those that exceeded this threshold were 

considered significant. Fig. 5 shows the distribution 

of trajectories per region. Regions that did not meet 

this threshold were excluded from the encoding, 

ensuring that detections within those zones do not 

influence the training of the autoencoder. 

 
Fig. 5. Trajectories per Voronoi region for the Bogotá - San 

Andrés route. 

Source: own elaboration. 

 

During the prediction process, any Voronoi region 

not known in the training set is encoded as a zero 

vector. This approach ensures that less relevant 

regions or those outside the training set do not 

interfere with the model’s performance, maintaining 

an appropriate categorical representation of the 

segmented airspace. 

 

2.6. Anomaly Detection with Autoencoders 

 

For the detection of anomalies in flight trajectories, 

two autoencoders were trained with different input 

configurations. The first one uses normalized 

continuous features (latitude, longitude, speed, and 

heading). The second incorporates a discrete 

representation of the airspace using Voronoi 

regions, encoded with One-Hot Encoding, along 

with the normalized kinematic features speed and 

heading. Both models were implemented using the 

Keras library, with an Adam optimizer and the mean 

squared error (MSE) loss function, defined in 

equation (2). 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − �̂�𝑖)

2𝑛
𝑖=1   (2) 

 

Where 𝑥𝑖 is the original value, �̂�𝑖 is the 

reconstructed value, and 𝑛 is the number of features. 

The goal of the autoencoders is to minimize the 

reconstruction error, allowing them to learn the 

normal patterns of the trajectories, and based on this, 

detect anomalies. 

 

Both autoencoders were trained for 100 epochs with 

a batch size of 32. The hidden layers of both models 

use the ReLU activation function, and the output 

layer uses a linear activation function. 

 

The architecture of both autoencoders is detailed in 

Table 1. 
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Table 1: Autoencoder Architecture 

 

Layer Continuous 

Autoencoder 

Voronoi 

Autoencoder 

Input 4 11 

Encoder 1 16 64 

Encoder 2 8 32 
Bottleneck 4 8 

Decoder 1 8 32 

Decoder 2 16 64 
Output 4 11 

Source: own elaboration. 

 

In Fig. 6, a comparison of reconstruction errors 

between both autoencoders is presented. The results 

show that the continuous autoencoder exhibits 

greater dispersion in reconstruction errors, reaching 

values up to 0.38. This suggests that the continuous 

model is more sensitive to variations in the 

trajectories or anomalies in the data, indicating 

greater difficulty in accurately reconstructing 

certain points. 

 

 
Fig. 6. Comparison of reconstruction errors. 

Source: own elaboration. 

 

On the other hand, the autoencoder based on 

Voronoi regions (Voronoi autoencoder) shows 

reduced dispersion in reconstruction errors, with a 

maximum of 0.25. This suggests that the Voronoi 

model provides greater consistency in its 

predictions. The difference in the behavior of both 

models could be attributed to the discrete 

segmentation of the airspace in the Voronoi 

approach, which simplifies the representation of the 

trajectories. Additionally, this model includes a 

larger number of input parameters by incorporating 

9 Voronoi regions along with the speed and heading 

features. This increased complexity is reflected in 

the higher number of neurons in the encoder and 

decoder layers, allowing it to reconstruct trajectories 

more accurately and capture patterns. 

 

3. RESULTS 

 

To evaluate and compare the results obtained by 

both autoencoders (continuous and Voronoi), a 

quantitative and qualitative analysis was conducted. 

Different reconstruction thresholds were set for each 

model based on the analysis of reconstruction errors 

(Fig. 6). For the continuous autoencoder, a threshold 

of 0.02 was established, while for the Voronoi 

autoencoder, the threshold was 0.014. These 

thresholds determine when a detection is classified 

as anomalous or normal. 

 

In the quantitative analysis, metrics such as 

precision, recall, and F1-score were examined, 

comparing the predictions of the autoencoders with 

the labels generated by DBSCAN. On the other 

hand, the qualitative analysis assessed how each 

approach segments and classifies the detections. 

 

In quantitative terms, both autoencoders 

demonstrated high effectiveness in detecting 

anomalies compared to the reference labels 

generated by DBSCAN, as shown in Table 2. The 

autoencoder based on continuous features (latitude, 

longitude, speed, and heading) achieved on average 

96% precision in detecting anomalies, while the 

autoencoder based on Voronoi regions achieved a 

slightly higher precision on average of 97%. 

However, the differences in identifying normal 

trajectories were significant: the continuous 

autoencoder obtained 8% precision, compared to 

21% for the Voronoi-based model. 

 
Table 2: Quantitative Evaluation of Autoencoders 

 

Metric Continuous 

Autoencoder 

Voronoi 

Autoencoder 

Precision (normal) 8% 21% 
Precision (anomaly) 96% 97% 

Recall (normal) 11% 32% 

Recall (anomaly) 94% 95% 
F1-score (normal) 9% 25% 

F1-score (anomaly) 95% 96% 

Macro avg 0.53 0.63 

Source: own elaboration. 

 

The recall, which measures the model’s ability to 

correctly detect anomalies, was similar for both 

approaches, with values on average close to 95% for 

both the Voronoi and continuous autoencoders. 

However, the F1-score and macro average (the 

average between both classes: normal and anomaly) 

reflect an advantage for the Voronoi-based model, 

which achieved a macro average of 0.63 compared 

to 0.53 for the continuous autoencoder. This result 

indicates that the Voronoi autoencoder is not only 

more efficient at detecting anomalies but also more 

accurate in identifying normal trajectories, which is 

relevant for reducing false positives. 

 

Since DBSCAN relied exclusively on latitude and 

longitude for anomaly detection, while the 

autoencoders consider additional features such as 

speed and heading, the quantitative metrics may be 

affected by the autoencoders’ ability to detect 
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relevant patterns that DBSCAN failed to identify. 

This underscores the need to complement the 

quantitative analysis with a qualitative analysis to 

assess cases where the models capture significant 

deviations not detected by DBSCAN. 

 

The qualitative analysis revealed important 

differences in the behavior of the two autoencoders. 

In Fig. 7, the continuous autoencoder classifies as 

normal detections that are far from the expected air 

corridors, while the Voronoi-based approach shows 

greater control in classification, associating the 

detections with representative regions for the route 

(Fig. 8). In both cases, green points correspond to 

detections classified as normal, and red points 

represent anomalies. This suggests that the 

continuous autoencoder is more sensitive to small 

variations in trajectories, which can lead to incorrect 

classifications and a higher rate of false positives. 

 

 
Fig. 7. Anomalous and normal detections identified by the 

continuous autoencoder. 
Source: own elaboration. 

 

 
Fig. 8. Anomalous and normal detections identified by the 

Voronoi autoencoder. 

Source: own elaboration. 

 

A notable feature of the Voronoi Autoencoder is its 

ability to provide greater explainability in the 

results. By aligning with the segmentation of the 

airspace through Voronoi regions, it allows for 

clearer interpretation of where anomalies are in 

relation to the geographical space, thus facilitating 

the analysis and understanding of flight patterns. As 

seen in the visualization of trajectories by Voronoi 

region (Fig. 9), the model offers an intuitive 

representation of the distribution of anomalies 

throughout the airspace, providing a valuable tool 

for the qualitative analysis of the results. 

 

 
Fig. 9. Anomalous and normal data identified by the Voronoi 

autoencoder for the BUTAL region. 
Source: own elaboration. 

 

4. CONCLUSIONS 

 

This article presents a comparison between two 

autoencoder approaches for anomaly detection in 

flight trajectories. The methodology uses the 

unsupervised DBSCAN algorithm to generate an 

initial reference of anomalies, which is then 

employed in the training of the autoencoders. These 

models differ in their input data: one is trained with 

normalized continuous features (latitude, longitude, 

speed, and heading), while the other incorporates a 

discrete representation of the airspace through 

Voronoi regions, along with the kinematic variables 

speed and heading. 

 

Both autoencoders demonstrated high performance 

in anomaly detection, on average with 96% 

accuracy for the continuous autoencoder and 97% 

for the Voronoi autoencoder. However, significant 

differences were observed when evaluating the 

ability to identify normal trajectories based on the 

labels generated by DBSCAN. While the 

continuous autoencoder achieved 8% accuracy, the 

Voronoi model reached 21%. 

 

By complementing the quantitative results with a 

qualitative analysis, as seen in Fig. 7 and Fig. 8, it 

can be inferred that, although DBSCAN is based on 

geographical distances, the autoencoders detect 
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more complex anomalies by including kinematic 

variables. This allows detections to be classified not 

only by proximity but also by the aircraft's behavior 

in the airspace. This observation highlights the 

importance of incorporating expert evaluations to 

validate the results beyond quantitative metrics, a 

common challenge in the evaluation of 

unsupervised models, as noted by authors like [13]. 

 

The representativeness of the data is critical for 

training autoencoders, which rely on normal data to 

identify anomalies. In future work, a semi-

supervised approach is suggested for constructing 

the ground truth, where expert intervention 

improves the selection of normal data and enhances 

the models' effectiveness. 

 

A key aspect of this work is the redefinition of 

features through Voronoi regions, which segment 

the airspace in a way that is contextualized with 

operations. This segmentation allows for a more 

intuitive representation of the trajectories and a 

more detailed analysis of anomalies, offering 

greater clarity in the relationship between anomalies 

and spatial location, as demonstrated in Fig. 9. 

 

Finally, the use of autoencoders in anomaly 

detection for flight trajectories supports a proactive 

safety approach. The ability to identify anomalous 

patterns before they become incidents contributes 

not only to improving operational safety but also to 

optimizing the efficiency of airspace management. 
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