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Abstract: Considering that one of the challenges of hyperspectral imaging is identifying 

methods that enable the effective and efficient detection of materials, this article proposes 

a new method for detecting asbestos in hyperspectral images based on spectral differential 

similarity. This method determines how closely the spectral signature of a given pixel 

matches the spectral signature of asbestos. The proposed method was implemented using 

open-source libraries such as spectral, numpy, pandas, and matplotlib. Compared to the 

correlation method, it detected 0.813% fewer vegetation pixels. In terms of computational 

efficiency, the proposed method was 4.27 times faster than the correlation method. The 

results indicate that the proposed method demonstrates adequate efficacy and excellent 

efficiency, making it a strong candidate for integration into tools for processing and 

analyzing hyperspectral images in academic and industrial domains. 

 

Keywords: Asbestos, correlation, hyperspectral imaging, spectral signature, remote 

sensing. 

 

Resumen: Teniendo en cuenta que uno de los desafíos de las imágenes hiperespectrales es 

la identificación de métodos que permitan la detección de materiales de manera eficaz y 

eficiente, en este artículo se propuso un nuevo método para la detección de asbesto en 

imágenes hiperespectrales basado en la similitud diferencial espectral, a través del cual es 

posible determinar que tan cercana es la firma espectral de un pixel determinado con 

respecto a la firma espectral del asbesto.  El método propuesto fue implementado mediante 

el uso de librerías del dominio del código abierto tales como: spectral, numpy, pandas y 

matplotlib, obteniendo que con respecto al método de correlación fue detectado un 0.813% 

menos pixeles de vegetación. Así mismo, se obtuvo a nivel de la eficiencia computacional 

que el método propuesto resultó 4.27 veces más rápido que el método de correlación. Los 

resultados obtenidos permiten concluir que el método propuesto presenta una adecuada 
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eficacia y una excelente eficiencia, lo cual permite que pueda ser considerado para ser 

integrado en herramientas para el procesamiento y análisis de imágenes hiperespectrales en 

el dominio académico y empresarial. 

 

Palabras clave: Asbesto, correlación, imagen hiperespectral, firma espectral, sensado 

remoto. 

 

 

1. INTRODUCTION 

 

Hyperspectral images (HSI) play a fundamental role 

in remote sensing by providing detailed spectral 

information that enables the identification and 

analysis of various types of materials through the 

detection of electromagnetic waves reflected by 

objects  [1]. In this context, HSI capture data across 

a wide range of wavelengths, from ultraviolet to 

infrared, allowing for a detailed analysis of 

materials and their properties by combining high 

spectral resolution with spatial accuracy. This 

combination is particularly useful in applications 

such as precision agriculture, where detailed 

observation optimizes agricultural processes [2]. 

Hyperspectral imaging systems generate what are 

known as datacubes, which collect data from 

hundreds of narrow spectral bands for each pixel in 

the image [3]. 

 

Hyperspectral imaging (HSI) has been applied 

across various fields. In precision agriculture, HSI 

has been widely used for crop classification, disease 

detection, and monitoring of crop conditions such as 

maturity and nutrient status [4], [5]. Similarly, in 

environmental contexts, HSI is employed to 

categorize and identify the composition of different 

surface elements, such as vegetation, water, soil, and 

urban areas, enabling natural resource management 

and environmental change monitoring [4], [6]–[8]. 

In geology, HSI facilitates the evaluation and 

identification of the composition, morphology, and 

structure of materials, making it a key tool for 

exploration and monitoring in earth sciences [9]. 

Additionally, HSI has enabled precise mapping and 

identification of mineral distributions in geological 

samples, including carbonate rocks and drill cores, 

through the analysis of their spectral signatures 

[10]–[12]. In the military domain, HSI has been 

used for the detection and recognition of low-

signature targets, which are challenging to identify 

due to their camouflage or low emissions. This 

provides a significant tactical advantage by allowing 

precise localization of discrete targets, subpixel-

level target detection, distinction of concealed 

features and camouflages, identification of chemical 

agents, and detection of disturbed soil over buried 

objects [13]–[15]. In public health, HSI has been 

essential for identifying asbestos in construction and 

demolition waste using the short-wave infrared 

range (SWIR: 1000–2500 nm) and detecting 

asbestos in urban rooftops. This is critical as 

asbestos poses a serious health risk, being linked to 

severe respiratory diseases, making its detection and 

control a public health priority [16]–[18]. Moreover, 

hyperspectral imaging for asbestos detection offers 

a more efficient and cost-effective alternative 

compared to traditional laboratory-based 

identification methods [19]. 

 

In addressing the challenges in the field of HSI, it is 

important to highlight that the large volume of data 

generated due to its high dimensionality demands 

significant storage and processing capabilities, 

which often necessitates the use of dimensionality 

reduction techniques to manage its complexity [6], 

[7], [20], [21]. Although effective and widely 

adopted techniques, such as supervised learning 

methods, are available for material detection in 

hyperspectral images, scalable solutions like 

distributed cloud training are required to handle data 

more efficiently in this context [22]. Similarly, the 

high dimensionality of hyperspectral data 

necessitates the implementation of advanced 

processing techniques to effectively manage the 

large data volumes [23], [24]. As an alternative to 

the challenge of high dimensionality, various 

approaches have been proposed, including feature 

selection and information gain methods, aiming to 

preserve relevant information while reducing 

dimensionality [25], [26]. 

 

In light of the aforementioned challenges related to 

dimensionality and processing efficiency in 

hyperspectral imaging, this article introduces a 

novel computational method for asbestos detection 

in hyperspectral images. The proposed method is 

based on evaluating the similarity between a pixel in 

the hyperspectral image and the spectral signature of 

asbestos, using the spectral difference between 

normalized reflectance curves. The method was 

implemented using open-source libraries such as 

spectral, numpy, pandas, matplotlib, and scipy. The 

evaluation of the proposed method was conducted 

on a reference hyperspectral image from the Manga 

neighborhood in Cartagena. Its effectiveness in 
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detection and computational efficiency were 

compared to the correlation method, which has been 

widely reported in the literature for material 

detection in hyperspectral images [27], [28]. This 

work makes a significant contribution to the 

dissemination of asbestos detection methods in 

urban environments, as exposure to this material is 

linked to severe health issues such as lung cancer 

and mesothelioma, making its identification a public 

health priority [29]. By promoting and leveraging 

these technologies, governmental authorities can 

better plan and prioritize intervention strategies, 

optimizing resource allocation for asbestos removal 

[16], [30]. Furthermore, the results obtained and the 

consideration of dimensionality challenges in 

hyperspectral imaging aim to expand the range of 

efficient detection options in this field, ensuring that 

the method can be applied in both academic and 

industrial settings for the identification of various 

materials. 

 

The remainder of the article is organized as follows: 

Section 2 outlines the methodological phases 

employed in the development of this research. 

Section 3 presents the results obtained in this work, 

including the characterization of the spectral 

signature of asbestos from the reference image, the 

determination of detection thresholds for asbestos, 

the implementation of the computational method, 

and, finally, the evaluation of the method's 

efficiency and effectiveness compared to the 

correlation method. Lastly, Section 4 provides the 

conclusions and future work derived from this 

research. 

 

2. METHODOLOGY 

 

The development of this research was structured 

into four methodological phases: P1. Selection of 

sample pixels and identification of the characteristic 

pixel, P2. Implementation and determination of the 

reference thresholds for the method, P3. 

Deployment of the method on the reference image, 

and P4. Comparative evaluation of the proposed 

method. 

 

In Phase 1 of the methodology, a reference 

hyperspectral image from the Manga neighborhood 

in Cartagena de Indias was initially selected, with 

dimensions of 850 pixels in width, 725 pixels in 

height, and a total of 380 spectral bands. 

Subsequently, visual inspection sampling was 

conducted on the reference image, selecting 75 

pixels corresponding to asbestos and 75 pixels 

corresponding to other materials (vegetation, water, 

metal roofs, roads, etc.). These pixels will later be 

used to determine the reference thresholds for 

asbestos detection using the proposed method. 

 

 
 

Fig. 1. Methodology considered for the development of the 
research. 

Source: Own elaboration. 

 

The above is illustrated in Fig. 2, where the selected 

asbestos pixels are shown in blue, and the pixels 

corresponding to other materials are shown in red. 

 

 
Fig. 2. Selected sample pixels. 

Source: Own elaboration. 

 

From the selected asbestos pixels, the average pixel 

was calculated, capturing the mean normalized 

reflectance of the asbestos pixels across its 380 

bands (see Fig. 3). This pixel is highly useful as it 

will be used to operate and correlate with various 

types of pixels to determine how similar the pixels 

in the image are to the characteristic asbestos pixel. 

 

In Phase 2 of the methodology, the spectral 

differential similarity method was implemented 

using the advantages provided by Python's numpy 

library. This method was developed based on 

Equation (1), which calculates the percentage 

similarity between two pixels by subtracting the 

characteristic pixel from a given pixel in the image. 

P1. Selection of sample 
pixels and identification 

of the characteristic 
pixel

P2. Implementation and 
determination of the 

reference thresholds for 
the method

P3.  Deployment of the 
method on the reference 

image

P4. Comparative 
evaluation of the 
proposed method
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𝑠𝑖𝑚_𝑝𝑒𝑟𝑐  =   100 −
∑ ⌈𝑝𝑖𝑥𝑖−𝑎𝑣𝑔_𝑝𝑖𝑥⌉𝑛

𝑖=1

𝑛
𝑥100 (1) 

 

In Equation (1),  ∑ ⌈𝑝𝑖𝑥𝑖 − avg_pix⌉𝑛
𝑖=1  represents 

the summation of absolute differences between a 

given pixel 𝑖 and the characteristic or average pixel 

at the level of the n bands that make up the 

hyperspectral image, where 𝑛 = 380 in this case. 

Thus, the closer a pixel is to the average pixel, the 

summation approaches 0, and the percentage 

similarity tends toward 0. Similarly, since the image 

has normalized reflectance values, the worst-case 

difference between bands will be 1, resulting in a 

total summation of 380, where the similarity will 

approach 100. Once the proposed method was 

implemented using Python libraries, its 

effectiveness was evaluated using the 75 asbestos 

pixels and the 75 non-asbestos pixels. In both cases, 

the minimum and maximum similarity percentages 

were determined using Equation (1). Based on this, 

a detection threshold was established as the 

minimum similarity percentage for asbestos pixels, 

ensuring that this value does not overlap with the 

maximum similarity percentage obtained for non-

asbestos pixels. 

 

In Phase 3 of the methodology, the method was 

applied to all pixels in the image using the threshold 

determined in Phase 2, coloring the pixels where the 

presence of asbestos was detected. It is worth 

mentioning that each detected asbestos pixel was 

counted to determine the percentage of asbestos 

pixels present in the reference image. Additionally, 

the similarity operations were performed on the 

normalized representation of the image, as Equation 

(1) is designed to operate on normalized reflectance 

values. The percentage of asbestos pixels identified 

in the reference image was then compared to the 

percentage obtained using the correlation method to 

evaluate the effectiveness of the proposed method. 

 

Finally, in Phase 4 of the methodology, the 

efficiency of the spectral difference method was 

compared with the correlation method by executing 

both on a square region of the image measuring 

50x50x380 pixels a predetermined number of times 

(20, 40, 60, 80, and 100 repetitions). The objective 

was to calculate the average execution time for each 

method and determine which demonstrates greater 

computational efficiency. 

 

 

3. RESULTS 

 

Once the 75 sample pixels of asbestos and the 75 

pixels of other materials were selected, as described 

in the methodology, the first step was to obtain the 

characteristic pixel or spectral signature of the 75 

asbestos pixels. This was achieved by averaging the 

normalized reflectance values across the 380 bands, 

resulting in the characteristic spectral signature of 

asbestos, which is presented in Fig. 3. 

 

 
Fig. 3. Characteristic pixel obtained for asbestos. 

Source: Own elaboration. 

 

Based on the characteristic pixel obtained, the 

spectral differential similarity method was 

implemented in Python and evaluated using the 

sample pixels of asbestos and other materials. In 

Fig. 4, the implementation of the mentioned method 

is shown from left to right, first with the 75 sample 

asbestos pixels and then with the non-asbestos 

pixels, aiming to determine the thresholds that can 

be used for asbestos detection in the complete 

reference hyperspectral image. 

 

 
Fig. 4. Evaluation of the method with asbestos and non-asbestos 

pixels. Source: Own elaboration. 
 

From the execution of the scripts shown in Fig. 4, 

the minimum, maximum, and average spectral 

differential similarity percentages were obtained, as 

presented in Fig. 5. It can be observed that there is 

no overlap between the minimum spectral 

differential similarity percentage for asbestos pixels 

(97.259%) and the maximum spectral differential 

similarity percentage for non-asbestos pixels 

(96.776%), with a percentage difference of 0.483% 

between these two values. Thus, the minimum 

detection threshold for asbestos pixels that can be 

considered for the complete image is 97.259%. 
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Fig. 5. Spectral difference percentages obtained with asbestos 

and non-asbestos pixels. 

Source: Own elaboration. 

 

Similarly, it is worth mentioning that when 

implementing the correlation method on the same 

75 sample pixels of asbestos and other materials, the 

results presented in Fig. 6 were obtained. 

 

 
Fig. 6. Correlation percentages obtained with asbestos and 

non-asbestos pixels. 
Source: Own elaboration. 

 

From Fig. 6, it can be observed that in the case of 

the correlation method, the difference in similarity 

between the minimum correlation percentage for 

asbestos pixels and the maximum correlation 

percentage for non-asbestos pixels is 1.387%. This 

difference is 2.87 times greater than the difference 

obtained using the spectral differential similarity 

method (0.483%). Despite this, in both cases, the 

methods show no overlap in the identification of 

asbestos and non-asbestos pixels, and the spectral 

differential similarity method can be effectively 

used for detecting this material. 

 

Once the thresholds for the spectral differential 

similarity method were identified, both this method 

and the correlation method were applied to the 

complete reference image to evaluate their 

effectiveness in detecting the percentage of the 

image corresponding to asbestos. The results of 

these methods applied to the reference image are 

presented in Fig. 7, where the detected asbestos 

pixels are shown in blue for both methods. It is 

important to note that both methods utilize the 

spectral signature or average asbestos pixel to 

operate with the remaining pixels in the image. 

 

 
Fig. 7. Detection of asbestos on the reference hyperspectral 

image using the spectral similarity and correlation methods. 

Source: Own elaboration. 

 

From the full-image scan performed by the two 

implemented methods, the percentage of the image 

containing asbestos pixels was determined based on 

the pixel count conducted by both methods, as 

shown in Fig. 8. Specifically, as illustrated in Fig. 8, 

the spectral differential similarity method identified 

10.623% of the pixels as asbestos, while the 

correlation method identified 9.81%, resulting in a 

percentage difference of 0.813%. 

 

 
Fig. 8. Percentage of asbestos pixels detected. 

Source: Own elaboration. 

 

The aforementioned results can be explained by the 

fact that the correlation method exhibits a larger 

difference between the minimum percentage value 

for asbestos pixels and the maximum percentage 

value for non-asbestos pixels. This results in a lower 

tendency to misclassify asbestos pixels as other 

types of pixels. However, both methods yield very 

similar percentage values for detected asbestos, 

indicating that the spectral differential similarity 

method can be considered suitable for detecting 

asbestos in hyperspectral images due to its low 

margin of error compared to the correlation method. 
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Once the effectiveness of the spectral differential 

similarity method was compared to the correlation 

method, the computational efficiency of these two 

methods was also evaluated. For this purpose, a 

region of 100x100 pixels, each with 380 bands, was 

selected. Both methods were executed 20, 40, 60, 

80, and 100 times on this region to calculate the 

average time taken by each method to process the 

selected region and determine the efficiency of one 

method relative to the other. A portion of the 

reference image was used to conduct these 

executions, as performing multiple runs on the full 

image would require considerable time and 

resources. The results of the average execution time 

for the two methods across the different repetitions 

are presented in Table 1. 

 
Table 1: Average execution time per repetitions 

 

Repetitions Average 

execution time – 

correlation (s) 

Average execution 

time – spectral 

differential 

similarity (s) 

20 0.542 0.124 
40 0.562 0.114 

60 0.543 0.136 

80 0.540 0.137 
100 0.537 0.127 

Avg 0.545 0.128 

Source: Own elaboration. 

 

According to the results presented in Table 1, it can 

be observed that for the different groups of 

repetitions, the correlation method has an average 

execution time of approximately 0.545 seconds, 

while the spectral differential similarity method has 

an average execution time of approximately 0.128 

seconds. This indicates that the spectral differential 

similarity method is 4.27 times faster than the 

correlation method. This finding is further 

illustrated in the graph presented in Fig. 9, which 

shows that for the various executions, the time 

required by the correlation method is four times 

greater. 

 

 
Fig. 9. Average time per execution in the two methods. 

Source: Own elaboration. 

Based on the above, it can be concluded that the 

spectral differential similarity method demonstrates 

significantly greater efficiency compared to the 

correlation method, a crucial advantage given the 

large dimensions of hyperspectral datacubes 

generated in urban area analyses. This method not 

only maintains comparable effectiveness to the 

correlation method but is also 4.27 times faster, 

making it an ideal alternative for integration into 

hyperspectral image analysis systems. Its 

combination of high precision and speed optimizes 

analysis processes, enabling more agile and 

effective management of the large volumes of data 

required for these studies. 

 

3. CONCLUSIONS AND FUTURE WORK 

 

Considering that one of the key challenges in 

hyperspectral image processing is the identification 

of methods capable of efficiently processing the 

datacube representing the image while effectively 

detecting materials, this article introduces a novel 

method for identifying the spectral differential 

similarity between asbestos pixels and other 

materials. This method aims to serve as an 

alternative for inclusion in studies and tools for 

hyperspectral image analysis in academic or 

industrial contexts, given the results obtained in 

terms of both effectiveness and efficiency. 

 

When comparing the effectiveness of the spectral 

differential similarity method to the correlation 

method, it is observed that the proposed method 

achieved a similar percentage of identified asbestos 

pixels, with a difference of 0.81% in the proportion 

of pixels detected. This result considers that the 

difference between the minimum similarity 

percentage for asbestos pixels and the maximum 

similarity percentage for non-asbestos pixels 

(0.483%) is smaller than the difference obtained 

with the correlation method (1.387%). Thus, 

although the correlation method has a slightly 

higher detection threshold, the difference in 

detected pixels is less than 1%, indicating that the 

effectiveness of the proposed method can be 

considered adequate. 

 

When comparing the computational efficiency of 

the proposed method to the correlation-based 

method, it was concluded that the spectral 

differential similarity method is 4.27 times faster 

across the various repetitions performed on a region 

of the reference hyperspectral image. This 

improvement represents a significant advantage, 

particularly in the analysis of urban hyperspectral 

images, where datacubes often have considerable 
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dimensions. The ability to drastically reduce 

processing times not only optimizes analysis in 

high-demand computational environments but also 

enables the tackling of more complex problems in 

less time, fostering more efficient and scalable 

applications in fields such as remote sensing, urban 

planning, and environmental management. 

 

This study demonstrated that open-source tools and 

libraries are an effective alternative to proprietary 

tools for the detection of materials in hyperspectral 

images, given the high costs associated with such 

tools for the academic community. In this regard, 

the spectral library proved highly useful for 

extracting spectral band data from the image used in 

this research. Similarly, the numpy library was 

essential for implementing the spectral differential 

similarity method and calculating the average pixel. 

Additionally, the pandas library was instrumental in 

loading the data points corresponding to the sample 

pixels of asbestos and non-asbestos. Finally, the 

matplotlib library facilitated the generation of 

graphs for asbestos pixels, non-asbestos pixels, and 

the characteristic pixel. 

 

As future work derived from this research, the aim 

is to improve the effectiveness of asbestos pixel 

detection, for instance, by using techniques to 

penalize out-of-range differences. This approach 

could enhance the difference between the minimum 

similarity percentage for asbestos pixels and the 

maximum similarity percentage for non-asbestos 

pixels. Similarly, comparisons of efficiency will be 

conducted between the proposed method and 

machine learning methods that have proven 

effective in detecting materials in hyperspectral 

images. 
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