
ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

66

Solution to the work plan generation problem based on

the traveling salesman agent problem using the genetic

algorithm Chu-Beasley

Solución al problema de generación de planes de trabajo basado en el

problema del agente viajero utilizando el algoritmo genético Chu-Beasley

PhD.(c) John Fredy Castaneda Londoño 1,

PhD. Ramón Alfonso Gallego Rendón 1,

PhD. Eliana Mirledy Toro Ocampo 2

1 Universidad Tecnológica de Pereira, Facultad de Ingenierías, Pereira, Risaralda, Colombia.

2 Universidad Tecnológica de Pereira, Facultad de Ciencias Empresariales, Pereira, Risaralda, Colombia.

Correspondence: jfcastaneda@utp.edu.co

Received: august 16, 2024. Accepted: december 17, 2024. Published: january 01, 2025.

How to cite: J. F. Castañeda Londoño, R. A. Gallego Rendón, and E. M. Toro Ocampo, “Solution to the work plan generation problem

based on the traveling salesman agent problem using the genetic algorithm Chu-Beasley”, RCTA, vol. 1, no. 45, pp. 66–73, jan. 2025.

Recovered from https://ojs.unipamplona.edu.co/index.php/rcta/article/view/3079

This work is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract: This article introduces a methodology to address logistics management by

generating work plans based on the Multiple Traveling Salesman Problem (MTSP). The

primary objective is cost minimization, which can manifest in two forms: distance or the

time required for executing work plans. Two methods are used to measure distance: the

first calculates spherical distances using the Haversine formula, and the second leverages

Google Maps data to obtain traffic-related travel time information. One of the goals of this

methodology is to validate the benefits of carrying out optimizations on multiple routes

affected by traffic variables, resulting in travel times, within a modern, modular, and rapidly

implementable software architecture. To solve the mathematical model, the Chu-Beasley

genetic algorithm is used with enhancements through the Or-Opt operator, aiming to obtain

high-quality solutions with reasonable times in daily logistics planning. In the results

analysis stage, tests were conducted using instances obtained from real company locations

whose operations are affected by logistics performance. The study's results were compared

to those of an expert in the field using the nearest neighbor algorithm as a reference,

focusing on the distance variable, which demonstrated significant improvements and

confirmed the benefits of using logistics planning with optimization algorithms considering

traffic variables.

Keywords: traveling salesman problem, genetic algorithm, traffic.

Resumen: Este artículo introduce una metodología para abordar la gestión logística al

generar planes de trabajo basado en el problema del Agente Viajero Múltiple (MTSP) y

tienen como objetivo la minimización de costos, que puede manifestarse en dos formas: la

distancia o el tiempo requerido para la ejecución de los planes de trabajo. Se emplean dos

Digital Object Identifier: 10.24054/rcta.v1i45.3079

https://ojs.unipamplona.edu.co/index.php/rcta/article/view/3079
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-5957-6966
https://orcid.org/0000-0002-0160-8929
https://orcid.org/0000-0002-6333-0977
https://creativecommons.org/licenses/by-nc/4.0/
https://ojs.unipamplona.edu.co/index.php/rcta/article/view/3079

ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

67

métodos para medir la distancia: el primero calcula distancias esféricas utilizando la

fórmula de Haversine, y el segundo aprovecha datos de Google Maps para obtener

información de tráfico asociada a tiempos de viaje. Uno de los propósitos de esta

metodología es validar los beneficios de llevar a cabo optimizaciones en rutas múltiples

que se ven afectadas por variables de tráfico, que se traducen en tiempos de recorrido, sobre

una arquitectura de software moderna, modular y de rápida implementación. Para resolver

el modelo matemático, se utiliza el algoritmo genético Chu-Beasley con mejoramientos a

través del operador Or-Opt, con el objetivo de obtener soluciones de calidad con tiempos

razonables en la planificación logística diaria. En la etapa de análisis de resultados, se

llevaron a cabo pruebas con instancias obtenidas de ubicaciones reales de empresas cuyas

operaciones se ven afectadas por el rendimiento logístico. Los resultados del estudio se

compararon simulando un experto en el área utilizando el algoritmo del vecino más cercano

como referencia y centrándose en la variable de distancia, evidenciando mejoras

significativas y confirmando el beneficio del uso del planeamiento logístico usando

algoritmos de optimización con variables de tráfico.

Palabras clave: problema de agente viajero, algoritmo genético, condiciones de tráfico.

1. INTRODUCTION

The Traveling Salesman Problem (TSP) is a

fundamental combinatorial optimization problem

that has received significant attention in recent

decades. Its relevance stems from its wide range of

real-world applications, including logistics

operations, courier and package delivery services,

circuit board drilling, scheduling maintenance for

correcting faults in utility company systems, and

many others.

Mathematically, the problem is formulated as

follows: Given a list of n cities along with the

distances between each pair of them, the objective is

to find a route that visits each city exactly once and

minimizes the total length of the route. The TSP is

classified as NP-complete, implying that there is no

algorithm that can solve it in deterministic time

regardless of the number of cities.

However, there are various approximate algorithms

that can find acceptable solutions in reasonable

times, especially for moderately sized instances,

depending on what is considered reasonable time.

When the problem requires finding a solution for

more than one agent, it is referred to as the Multiple

Traveling Salesman Problem (MTSP).

To frame the problem in real logistics scenarios,

Google Maps distances were used. These distances

are obtained through Dijkstra's algorithm, which is

an efficient algorithm for calculating the shortest

distance between two points in a graph. An

additional advantage of using Google Maps

distances is the possibility of combining objectives

associated with the distance between customers,

such as time. The time between two customers is

affected by traffic, thus the Google Maps distance

matrix increases accuracy for solving problems

closer to common logistics scenarios.

A brief review of the development of the TSP over

the years since its definition takes us to 1954, where

the Traveling Salesman Problem (TSP) was

formally introduced by George Dantzig, Ray

Fulkerson, and Selmer Johnson. This marks the

beginning of research in combinatorial optimization

problems in the context of route planning. In 1956,

Menger and Blumenthal independently extended the

TSP to the Multiple Traveling Salesman Problem

(MTSP) by introducing the concept of multiple

salesmen. They also proposed a heuristic to solve

the problem [1].

1970s-1980s: Significant progress is made in the

development of algorithms to solve the MTSP.

Researchers explore ways to optimize the

assignment of cities to salesmen, as well as the order

in which each salesman visits the cities. Dynamic

programming and mathematical programming

techniques are also applied to the problem [2].

1990s: Researchers increasingly focus on practical

applications of the MTSP, including vehicle routing

problems and distribution logistics. This leads to the

development of specialized algorithms and software

tools to solve real-world instances of the MTSP [3].

2000s: Advances in computing power and

optimization techniques lead to more efficient and

scalable algorithms for solving large-scale instances

ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

68

of the MTSP. Metaheuristic approaches such as

genetic algorithms, simulated annealing, and ant

colony optimization have become popular for

addressing the problem [4].

2010s: The MTSP remains a relevant and active

research problem, with applications in fields such as

transportation, telecommunications, and supply

chain management. Researchers explore hybrid

algorithms that combine multiple optimization

techniques to achieve better results [5].

2020 to present: The MTSP continues to be an area

of ongoing research, focusing on the development

of algorithms that can handle large and complex

instances of the problem. Researchers are also

exploring variations of the MTSP, such as the Time-

Dependent MTSP and the Stochastic MTSP, to

address more realistic scenarios [6], [7], [8].

It is important to note that this provided timeline is

a broad overview, and there have been numerous

individual research contributions and developments

in the field of the MTSP over the years.

Regarding applications identified in the literature

where the TSP is addressed with distances from

Google Maps services, an initial work in [9]

discusses a novel approach to optimize the MTSP

using a modified genetic algorithm. The approach

introduces a separate chromosome for each

salesman, allowing for a better representation of the

problem. The article also presents a comprehensive

methodology for optimal route planning with

multiple salesmen and secondary constraints, using

Google Maps as a starting point. The approach

provides a complete framework for solving

problems such as MTSP with time windows.

[10] presents the development of a web-based and

Android-based food ordering system that uses

heuristic algorithms to optimize product delivery.

The TSP is proposed to find the shortest route

between customer addresses. Additionally, GPS

technology and Google Maps are leveraged to allow

visualization of the routes on a map.

[11] discusses the development of a mobile

application to solve the TSP on devices with

Android and iOS operating systems. The study uses

Google Maps APIs to obtain real-world data on

locations and distances between them. It employs

Genetic Algorithms (GA) and Ant Colony

Optimization (ACO) algorithms to find optimal

routes for the TSP. The study tested the application

on different datasets and found that ACO provides

better route solutions, while GA is faster in terms of

computation time.

[12] propose a methodology to obtain accurate

solutions for the TSP in real-world instances using

Google Maps APIs. Real-world instances of the TSP

often face challenges related to map accuracy and

updates, especially in neighborhoods. The authors

propose a methodology that uses Google Maps APIs

to obtain spatial information, preprocesses the data

to create a valid graph, and then applies a

metaheuristic to solve the TSP. The results are

compared with digital maps, highlighting the

advantages of using Google Maps APIs for accurate

solutions. The authors emphasize the importance of

obtaining precise coordinates for points of interest

and the quality of road data for a successful solution.

[13] employs the Genetic Algorithm (GA) to tackle

the TSP. The study involves the collection and

preprocessing of geographic coordinates of city

areas, which are then used as input for the TSP-

specific Genetic Algorithm (TSGA). The TSGA

iteratively generates and evolves populations of

possible routes, calculating their fitness based on

distance. Through selection, crossover, and

mutation operations, it efficiently explores and

refines potential solutions, ultimately converging to

the shortest route to visit all areas. MATLAB is used

for implementation and analysis.

[14] develops a mobile application that employs a

Genetic Algorithm (GA) and the Google Maps

navigation system to solve the Route Optimization

Problem (ROP) for sales routes. The ROP is a

challenging problem in route planning and logistics,

where the goal is to find the shortest route to visit a

set of customers efficiently. The application,

designed for Android devices, uses GA to calculate

optimal sales routes based on factors such as

distance and customer locations.

The contribution of this work is to make a

comparison between using Haversine distances and

Google Maps API distances to develop efficient

solutions for the Traveling Salesman Problem by

simulating real scenarios in companies. It uses

distances and times affected by traffic as the

objective function and demonstrates the benefits

obtained from implementing these applications in

companies where their value chain has a significant

logistic component in their costs. Additionally, it

aims to develop a modern, modular, and quickly

implementable architecture for companies of any

size.

ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

69

Based on the above, the research objective of this

article is defined as the development of a

methodology to address the Multiple Traveling

Salesman Problem (MTSP) that minimizes cost-

time in daily logistics planning using two distance

matrices: one calculated using the Haversine

formula for spherical distances and another

incorporating Google Maps information to account

for traffic variables and travel time on an efficient

implementation platform.

2. METHODOLOGY

The conventional definition of Traveling Salesman

Problems (TSP) can be described using an

undirected complete graph. In this representation,

the set of customers is denoted as  0,..,V n=

where 0 designates the central distribution hub or

logistics center. The collection of edges that form

the underlying structure of the graph is denoted a

{(,) , , }A i j i j i j V=    . Being a

combinatorial optimization problem, it can be

formulated as a mixed integer linear programming

problem. For this, it is defined as follows:

Sets:

I
Set of logistics centers

or depots

J Customers

V Set I J

G Set of active agents

Decision variables:

ijx
Represents the active

edges in the graph
(binary).

iy
Represents whether

an agent is active
(binary).

ijf
A customer j served

from the depot i I .

(integer)

Parameters:

ijd The distance/cost
between customers i-j

(real)

0i The cost of using the
workforce group i.

(Oi=1) (real)

m Number of agents
(integer)

The model is defined as:

,

min ij ij i i

i j J j V
i j

d x o y
 



+  (1)

Subject to:

,

1ij

i V j J
i J

x
 


= (2)

1 ,ij jix x i j V+    (3)

,

()ij

i V j J
i J

x card V
 


 (4)

,

1ij

i I j J
i J

f
 


 (5)

,ij ijf x i I j J=    (6)

0 j

j J

x m


 (7)

1i

i G

y


 (8)

Equation (1) represents the cost function, which is

simplified by using distances as the dependent

variable of the function ()ij ijc f d= . In addition,

the costs of using a specific workforce group are

included. Constraints (2) and (3) ensure that each

node in the graph, except the depot, has two edges

ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

70

connecting it to other nodes. This guarantees that

each node is visited exactly once by each route.

Constraint (4) ensures that the number of edges in

the graph equals the number of nodes, as a function

of the cardinality of the set V. Constraints (5) and (6)

ensure that each customer is served by a specific

depot. This is necessary to meet the use case

requirements, which specify that each customer

must be served by a single agent. Constraint (7)

indicates that the number of routes must equal the

number of available workforce groups. This is

necessary to ensure that there are enough resources

to serve all customers. Constraint (8) ensures that at

least one workforce group is available. This is

necessary to ensure that the problem has at least one

feasible solution.

To obtain solutions to the proposed model, the Chu-

Beasley Genetic Algorithm (CBGA) is

implemented. The main characteristics of the

CBGA are as follows: (i) Initial Population: The

initial population is generated by creating a random

permutation of the customers.

(ii) Selection: Parents are selected from a subset of

the population through random selection. Only the

two fittest individuals are chosen for crossover.

(iii) Crossover: Crossover is performed using the

Partially Matched Crossover (PMX) operator [15].

This operator ensures that the resulting offspring

remain feasible within the defined constraints.

(iv) Mutation: Mutation is carried out by reversing a

random section of an individual's route.

(v) Improvement: After mutation, the Or-opt

operator is used to perform local improvements on

the individuals [16].

3. RESULTS

For this implementation, random locations were

used to simulate assets or customers of an electrical

distribution company. The dataset consists of

instances with 50, 100, and 150 customers,

distributed in both urban and rural areas.

Additionally, specific operational conditions were

considered, such as the existence of a depot or

central office in the most critical urban areas. In this

scenario, there are four central offices, each

associated with a constant number of workforce

groups.

Table 1: Implemented Instances

Instance Number of Working Groups

150 20

100 7
50 5

Under these conditions, the process of assigning

locations to individual headquarters, along with a

designated number of working groups, involves a

two-step clustering procedure: (1) Initial Clustering:

A K-means algorithm is executed with the number

of clusters configured to match the number of

working groups. This operational constraint ensures

the utilization of all available working groups. (2)

Headquarters Assignment: Subsequently, a

headquarters is assigned to each group using the K-

means algorithm. This step involves using the

centroids of the initial clusters in conjunction with

the locations of the headquarters. These experiments

were implemented in Python 3.9 on a laptop with an

8th generation Intel i5 vPro processor at 1.896 GHz

and 4 cores, running Windows 10. The CBGA

algorithm was implemented using the NumPy

library.

Tables 2, 3, and 4 show the results obtained for the

instances used in this work, as presented in Table 1.

The results for both the Haversine distances and the

Google Maps API distances reference the results

using the nearest neighbor or k-NN algorithm,

which simulates the most efficient empirical

planning. This means that for a company whose

planning is based on expert knowledge without any

clear scheduling rules or strategies, the benefits

would be greater. For the Haversine distances, the

travel time matrix was calculated by setting a

constant speed of 35 km/h. This approach is not very

precise but serves as a useful reference in this

experiment for making comparisons with the times

between locations affected by average traffic.

From the results tables, the following is obtained:

(1) Incumbent Distance: This is the distance value

in kilometers for all routes. These distances are

always shorter for the Haversine calculations

compared to Google’s, as the former are linear, and

the latter are by road. (2) Savings: This corresponds

to the comparison between the incumbent calculated

with the Google distance matrix and the use of the

K-NN algorithm. (3) Average Cluster Distance:

This is the Haversine distance between the cluster

centroid and the depot or logistics center. (4)

Incumbent Time: This corresponds to the time for

all routes. For Haversine, it is calculated by setting

a constant speed of 35 km/h. For Google, it is based

on information from the API. (5) Time Savings:

This is calculated with the Google time matrix using

the results obtained by the K-NN algorithm as a

reference. (6) O.F. Time: This column represents the

results when the objective function uses the Google

time matrix. That is, the travel time is minimized,

not the distance.

ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

71

Table 2: Results for the instance of 150 locations and 20

available working groups.

Type of Distance Haversine Google O.F Time

Incumbent

Distance
1257.32 km

2771.00
km

2811.00 km

Savings
41.32 km

122.00

km
82.00 km

Savings (%) 3,18% 4,22% 2,83%

Average Cluster

Distance
22.60 km 22.60 km 22.60 km

Incumbent Time
83.83 Hours

95.30
Hours

94.33
Hours

Time Savings
2.76 Hours

3.35

Hours
4.36 Hours

Execution Time
74,7 seg

404,01

seg
541,52 seg

Table 3: Results for the instance of 100 locations and 7
available working groups.

Type of

Distance
Haversine Google

O.F

Time

Incumbent

Distance 689.63 km 1570.91 km

1583.91

km

Savings

63.90 km 178.60 km
165.60

km

Savings (%)
8,48% 10,21% 9,47%

Average

Cluster

Distance 17.31 km 17.31 km 17.31 km

Incumbent

Time 45.96 Hours
58.66
Hours

58.22
Hours

Time

Savings 4.25 Hours 6.71 Hours

7.15

Hours
Execution

Time 42,3 seg 285,44 seg

310,73

seg

Table 4: Results for the instance of 50 locations and 5
available working groups.

Type of Distance Haversine Google O.F Time

Incumbent

Distance 558.24 km

1191.15

km 1219.33 km
Savings

21.96 km 36.34 km 8.16 km
Savings (%)

3,79% 2,96% 0,66%
Average Cluster

Distance 17.73 km 17.73 km 17.73 km

Incumbent Time

37.22 Hours

46.00

Hours

45.27

Hours

Time Savings

1.47 Hours

2.09

Hours 2.83 Hours
Execution Time

21,99 seg 97,88 seg 91,99 seg

Based on these results, using Google API

information provides a competitive advantage for

obtaining optimal route planning close to real

logistical scenarios. Time minimization is achieved

using the Google Maps API time matrix instead of

the distance matrix, where this approach is the most

suitable for obtaining routes. Execution using the

Haversine distance matrix is generally faster

because it is performed directly by the algorithm,

unlike the Google Maps API, which depends on the

response received via the internet using the HTTP

protocol. Fig. 1 shows the visual solution for the

results of the 150-20 instance using Google

distances, minimizing distance, and displaying the 4

headquarters or depots. Fig. 2 shows a preliminary

route in Google Maps for route 6.

Fig. 1. Results for the instance of 150 locations with 20 working

groups.

Fig. 2. Route 6 of the 150-20 instance solution as a route sketch

in Google Maps.

For the implementation, the software architecture

shown in Fig. 3 was used. It features a modular

construction with a front-end for the interface or

interaction and a back-end that processes the

information. The computational load is handled by

a RESTful API hosted on Microsoft Azure cloud

services, allowing it to be easily implemented on

any type of device, whether mobile or stationary,

without requiring high-performance hardware.

Fig. 3. Implementation Architecture

ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

72

4. CONCLUSIONS

This work addresses the Traveling Salesman

Problem (TSP), which is important in the logistics

industry and even in utility companies. A

methodology is presented that uses two distance

matrices: one based on the Haversine formula for

spherical distances and another that leverages

Google Maps information to incorporate traffic and

travel time variables. This methodology aims to

validate the benefits of route optimization affected

by traffic.

A genetic algorithm known as Chu-Beasley with the

Or-Opt operator is used to obtain high-quality

solutions in reasonable times. Test instances with

real but random locations were used to simulate real

logistical scenarios.

The results obtained in the experiments were

satisfactory compared to the nearest neighbor

algorithm, which simulates empirical planning with

acceptable performance. The use of Google Maps

information to obtain real distances and travel times

on roads between clients, considering traffic, was

highlighted as a competitive advantage for

achieving optimal route planning in realistic

logistical scenarios. Additionally, a modular

implementation architecture is proposed that allows

for rapid and versatile deployments.

Future work aims to develop a bi-objective

methodology that, in addition to cost, minimizes

greenhouse gas emissions. An additional solution

algorithm incorporating local search mechanisms is

also planned to enhance performance in terms of

solution quality and time.

5. ACKNOWLEDGEMENTS

The authors wish to thank the Universidad

Tecnológica de Pereira for its support in project 7-

22-1 and Central Hidroeléctrica de Caldas for its

support and feedback during the implementation.

6. REFERENCES

[1] W. R. Abel and L. M. Blumenthal,

“Distance Geometry of Metric Arcs,” Am.

Math. Mon., vol. 64, no. 8P2, pp. 1–10, Oct.

1957, doi:

10.1080/00029890.1957.11989113.

[2] K. C. Gilbert and R. B. Hofstra, “A New

Multiperiod Multiple Traveling Salesman

Problem with Heuristic and Application to a

Scheduling Problem,” Decis. Sci., vol. 23,

no. 1, pp. 250–259, 1992, doi:

10.1111/J.1540-5915.1992.TB00387.X.

[3] A. Langevin, F. Soumis, and J. Desrosiers,

“Classification of travelling salesman

problem formulations,” Oper. Res. Lett.,

vol. 9, no. 2, pp. 127–132, Mar. 1990, doi:

10.1016/0167-6377(90)90052-7.

[4] T. Bektas, “The multiple traveling salesman

problem: an overview of formulations and

solution procedures,” Omega, vol. 34, no. 3,

pp. 209–219, Jun. 2006, doi:

10.1016/J.OMEGA.2004.10.004.

[5] R. I. Bolaños, E. M. Toro O, and M.

Granada E, “A population-based algorithm

for the multi travelling salesman problem,”

Int. J. Ind. Eng. Comput., vol. 7, no. 2, pp.

245–256, Mar. 2016, doi:

10.5267/J.IJIEC.2015.10.005.

[6] O. Cheikhrouhou and I. Khoufi, “A

comprehensive survey on the Multiple

Traveling Salesman Problem: Applications,

approaches and taxonomy,” Computer

Science Review, vol. 40. 2021. doi:

10.1016/j.cosrev.2021.100369.

[7] C. Colombaroni, M. Mohammadi, and G.

Rahmanifar, “Makespan minimizing on

multiple travel salesman problem with a

learning effect of visiting time,” WSEAS

Trans. Syst. Control, vol. 15, pp. 477–489,

2020, doi: 10.37394/23203.2020.15.50.

[8] R. G. Mbiadou Saleu, L. Deroussi, D.

Feillet, N. Grangeon, and A. Quilliot, “The

Parallel Drone Scheduling Problem with

Multiple Drones and Vehicles,” Eur. J.

Oper. Res., vol. 300, no. 2, pp. 571–589, Jul.

2022, doi: 10.1016/j.ejor.2021.08.014.

[9] A. Király and J. Abonyi, “A Google Maps

based novel approach to the optimization of

multiple Traveling Salesman problem for

limited distribution systems,” Acta Agrar.

Kaposváriensis, vol. 14, no. 3, pp. 1–14,

2010, [Online]. Available:

https://journal.uni-

mate.hu/index.php/aak/article/view/1952

[10] R. D. H. Tobing, “A food ordering system

with delivery routing optimization using

global positioning system (GPS) technology

and google maps,” Internetworking

Indones. J., vol. 8, no. 1, pp. 17–21, 2016.

[11] İ. İlhan, “An Application on Mobile

Devices with Android and IOS Operating

Systems Using Google Maps APIs for the

Traveling Salesman Problem,” Appl. Artif.

Intell., vol. 31, no. 4, pp. 332–345, 2017,

doi: 10.1080/08839514.2017.1339983.

[12] L. G. Hernández-Landa and R. E. Mata-

ISSN: 1692-7257 - Volume 1 – Number 45 - 2025

University of Pamplona
 I. I. D. T. A.

73

Martínez, “Accurate solutions for real

instances of the traveling salesman problem

using Google Maps APIs,” Proc. Int. Conf.

Ind. Eng. Oper. Manag., vol. 2018, no. SEP,

pp. 837–843, 2018.

[13] Z. Al-Jabbar, “Using Genetic Algorithm to

Solve Travelling Salesman Optimization

Problem Based on Google Map Coordinates

for Duhok City Areas,” Acad. J. Nawroz

Univ., vol. 7, no. 3, pp. 99–114, 2018, doi:

10.25007/ajnu.v7n3a207.

[14] C. Zambrano-Vega, G. Acosta, J. Loor, B.

Suárez, C. Jaramillo, and B. Oviedo, “A

Sales Route Optimization Mobile

Application Applying a Genetic Algorithm

and the Google Maps Navigation System,”

Adv. Intell. Syst. Comput., vol. 918, pp.

517–527, 2019, doi: 10.1007/978-3-030-

11890-7_50.

[15] D. E. Goldberg and R. Lingle, “Alleles, loci,

and the traveling salesman problem,” in

Proceedings of an International Conference

on Genetic Algorithms, 1985, pp. 10–19.

[16] R. A. Gallego Rendón, E. M. Toro Ocampo,

and A. H. Escobar Zuluaga, Técnicas

Heurísticas y Metaheurísticas. Universidad

Tecnológica de Pereira. Vicerrectoría de

Investigaciones, Innovación y Extensión.

Ingenierías Eléctrica, Electrónica, Física y

Ciencias de la Computación, 2015.

Accessed: Sep. 03, 2023. [Online].

Available: https://unilibros.co/gpd-

tecnicas-heuristicas-y-metaheuristicas.html

