
ISSN: 1692-7257 - Volume 1 – Number 45 - 2025 
 

  

 
University of Pamplona 
       I. I. D. T. A.  

66 

 

 

 

Solution to the work plan generation problem based on 

the traveling salesman agent problem using the genetic 

algorithm Chu-Beasley 
 

Solución al problema de generación de planes de trabajo basado en el 

problema del agente viajero utilizando el algoritmo genético Chu-Beasley 
 

 

PhD.(c) John Fredy Castaneda Londoño 1,  

PhD. Ramón Alfonso Gallego Rendón 1, 

PhD. Eliana Mirledy Toro Ocampo 2 

 
1 Universidad Tecnológica de Pereira, Facultad de Ingenierías, Pereira, Risaralda, Colombia. 

2 Universidad Tecnológica de Pereira, Facultad de Ciencias Empresariales, Pereira, Risaralda, Colombia. 
 

Correspondence: jfcastaneda@utp.edu.co 

 

Received: august 16, 2024. Accepted: december 17, 2024. Published: january 01, 2025. 
 

 
 

How to cite: J. F. Castañeda Londoño, R. A. Gallego Rendón, and E. M. Toro Ocampo, “Solution to the work plan generation problem 

based on the traveling salesman agent problem using the genetic algorithm Chu-Beasley”, RCTA, vol. 1, no. 45, pp. 66–73, jan. 2025.  

Recovered from https://ojs.unipamplona.edu.co/index.php/rcta/article/view/3079 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial 4.0 International License. 

 

 
 

 

Abstract: This article introduces a methodology to address logistics management by 

generating work plans based on the Multiple Traveling Salesman Problem (MTSP). The 

primary objective is cost minimization, which can manifest in two forms: distance or the 

time required for executing work plans. Two methods are used to measure distance: the 

first calculates spherical distances using the Haversine formula, and the second leverages 

Google Maps data to obtain traffic-related travel time information. One of the goals of this 

methodology is to validate the benefits of carrying out optimizations on multiple routes 

affected by traffic variables, resulting in travel times, within a modern, modular, and rapidly 

implementable software architecture. To solve the mathematical model, the Chu-Beasley 

genetic algorithm is used with enhancements through the Or-Opt operator, aiming to obtain 

high-quality solutions with reasonable times in daily logistics planning. In the results 

analysis stage, tests were conducted using instances obtained from real company locations 

whose operations are affected by logistics performance. The study's results were compared 

to those of an expert in the field using the nearest neighbor algorithm as a reference, 

focusing on the distance variable, which demonstrated significant improvements and 

confirmed the benefits of using logistics planning with optimization algorithms considering 

traffic variables. 

 
Keywords: traveling salesman problem, genetic algorithm, traffic. 

 

Resumen: Este artículo introduce una metodología para abordar la gestión logística al 

generar planes de trabajo basado en el problema del Agente Viajero Múltiple (MTSP) y 

tienen como objetivo la minimización de costos, que puede manifestarse en dos formas: la 

distancia o el tiempo requerido para la ejecución de los planes de trabajo. Se emplean dos 
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métodos para medir la distancia: el primero calcula distancias esféricas utilizando la 

fórmula de Haversine, y el segundo aprovecha datos de Google Maps para obtener 

información de tráfico asociada a tiempos de viaje. Uno de los propósitos de esta 

metodología es validar los beneficios de llevar a cabo optimizaciones en rutas múltiples 

que se ven afectadas por variables de tráfico, que se traducen en tiempos de recorrido, sobre 

una arquitectura de software moderna, modular y de rápida implementación. Para resolver 

el modelo matemático, se utiliza el algoritmo genético Chu-Beasley con mejoramientos a 

través del operador Or-Opt, con el objetivo de obtener soluciones de calidad con tiempos 

razonables en la planificación logística diaria. En la etapa de análisis de resultados, se 

llevaron a cabo pruebas con instancias obtenidas de ubicaciones reales de empresas cuyas 

operaciones se ven afectadas por el rendimiento logístico. Los resultados del estudio se 

compararon simulando un experto en el área utilizando el algoritmo del vecino más cercano 

como referencia y centrándose en la variable de distancia, evidenciando mejoras 

significativas y confirmando el beneficio del uso del planeamiento logístico usando 

algoritmos de optimización con variables de tráfico. 

 
Palabras clave: problema de agente viajero, algoritmo genético, condiciones de tráfico. 

 

 

 

1. INTRODUCTION 

 

The Traveling Salesman Problem (TSP) is a 

fundamental combinatorial optimization problem 

that has received significant attention in recent 

decades. Its relevance stems from its wide range of 

real-world applications, including logistics 

operations, courier and package delivery services, 

circuit board drilling, scheduling maintenance for 

correcting faults in utility company systems, and 

many others. 

 

Mathematically, the problem is formulated as 

follows: Given a list of n cities along with the 

distances between each pair of them, the objective is 

to find a route that visits each city exactly once and 

minimizes the total length of the route. The TSP is 

classified as NP-complete, implying that there is no 

algorithm that can solve it in deterministic time 

regardless of the number of cities. 

 

However, there are various approximate algorithms 

that can find acceptable solutions in reasonable 

times, especially for moderately sized instances, 

depending on what is considered reasonable time. 

When the problem requires finding a solution for 

more than one agent, it is referred to as the Multiple 

Traveling Salesman Problem (MTSP). 

 

To frame the problem in real logistics scenarios, 

Google Maps distances were used. These distances 

are obtained through Dijkstra's algorithm, which is 

an efficient algorithm for calculating the shortest 

distance between two points in a graph. An 

additional advantage of using Google Maps 

distances is the possibility of combining objectives 

associated with the distance between customers, 

such as time. The time between two customers is 

affected by traffic, thus the Google Maps distance 

matrix increases accuracy for solving problems 

closer to common logistics scenarios. 

 

A brief review of the development of the TSP over 

the years since its definition takes us to 1954, where 

the Traveling Salesman Problem (TSP) was 

formally introduced by George Dantzig, Ray 

Fulkerson, and Selmer Johnson. This marks the 

beginning of research in combinatorial optimization 

problems in the context of route planning. In 1956, 

Menger and Blumenthal independently extended the 

TSP to the Multiple Traveling Salesman Problem 

(MTSP) by introducing the concept of multiple 

salesmen. They also proposed a heuristic to solve 

the problem [1]. 

 

1970s-1980s: Significant progress is made in the 

development of algorithms to solve the MTSP. 

Researchers explore ways to optimize the 

assignment of cities to salesmen, as well as the order 

in which each salesman visits the cities. Dynamic 

programming and mathematical programming 

techniques are also applied to the problem [2]. 

 

1990s: Researchers increasingly focus on practical 

applications of the MTSP, including vehicle routing 

problems and distribution logistics. This leads to the 

development of specialized algorithms and software 

tools to solve real-world instances of the MTSP [3]. 

 

2000s: Advances in computing power and 

optimization techniques lead to more efficient and 

scalable algorithms for solving large-scale instances 
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of the MTSP. Metaheuristic approaches such as 

genetic algorithms, simulated annealing, and ant 

colony optimization have become popular for 

addressing the problem [4]. 

 

2010s: The MTSP remains a relevant and active 

research problem, with applications in fields such as 

transportation, telecommunications, and supply 

chain management. Researchers explore hybrid 

algorithms that combine multiple optimization 

techniques to achieve better results [5]. 

 

2020 to present: The MTSP continues to be an area 

of ongoing research, focusing on the development 

of algorithms that can handle large and complex 

instances of the problem. Researchers are also 

exploring variations of the MTSP, such as the Time-

Dependent MTSP and the Stochastic MTSP, to 

address more realistic scenarios [6], [7], [8]. 

 

It is important to note that this provided timeline is 

a broad overview, and there have been numerous 

individual research contributions and developments 

in the field of the MTSP over the years. 

 

Regarding applications identified in the literature 

where the TSP is addressed with distances from 

Google Maps services, an initial work in [9] 

discusses a novel approach to optimize the MTSP 

using a modified genetic algorithm. The approach 

introduces a separate chromosome for each 

salesman, allowing for a better representation of the 

problem. The article also presents a comprehensive 

methodology for optimal route planning with 

multiple salesmen and secondary constraints, using 

Google Maps as a starting point. The approach 

provides a complete framework for solving 

problems such as MTSP with time windows. 

 

[10] presents the development of a web-based and 

Android-based food ordering system that uses 

heuristic algorithms to optimize product delivery. 

The TSP is proposed to find the shortest route 

between customer addresses. Additionally, GPS 

technology and Google Maps are leveraged to allow 

visualization of the routes on a map. 

 

[11] discusses the development of a mobile 

application to solve the TSP on devices with 

Android and iOS operating systems. The study uses 

Google Maps APIs to obtain real-world data on 

locations and distances between them. It employs 

Genetic Algorithms (GA) and Ant Colony 

Optimization (ACO) algorithms to find optimal 

routes for the TSP. The study tested the application 

on different datasets and found that ACO provides 

better route solutions, while GA is faster in terms of 

computation time. 

 

[12] propose a methodology to obtain accurate 

solutions for the TSP in real-world instances using 

Google Maps APIs. Real-world instances of the TSP 

often face challenges related to map accuracy and 

updates, especially in neighborhoods. The authors 

propose a methodology that uses Google Maps APIs 

to obtain spatial information, preprocesses the data 

to create a valid graph, and then applies a 

metaheuristic to solve the TSP. The results are 

compared with digital maps, highlighting the 

advantages of using Google Maps APIs for accurate 

solutions. The authors emphasize the importance of 

obtaining precise coordinates for points of interest 

and the quality of road data for a successful solution. 

 

[13] employs the Genetic Algorithm (GA) to tackle 

the TSP. The study involves the collection and 

preprocessing of geographic coordinates of city 

areas, which are then used as input for the TSP-

specific Genetic Algorithm (TSGA). The TSGA 

iteratively generates and evolves populations of 

possible routes, calculating their fitness based on 

distance. Through selection, crossover, and 

mutation operations, it efficiently explores and 

refines potential solutions, ultimately converging to 

the shortest route to visit all areas. MATLAB is used 

for implementation and analysis. 

 

[14] develops a mobile application that employs a 

Genetic Algorithm (GA) and the Google Maps 

navigation system to solve the Route Optimization 

Problem (ROP) for sales routes. The ROP is a 

challenging problem in route planning and logistics, 

where the goal is to find the shortest route to visit a 

set of customers efficiently. The application, 

designed for Android devices, uses GA to calculate 

optimal sales routes based on factors such as 

distance and customer locations. 

 

The contribution of this work is to make a 

comparison between using Haversine distances and 

Google Maps API distances to develop efficient 

solutions for the Traveling Salesman Problem by 

simulating real scenarios in companies. It uses 

distances and times affected by traffic as the 

objective function and demonstrates the benefits 

obtained from implementing these applications in 

companies where their value chain has a significant 

logistic component in their costs. Additionally, it 

aims to develop a modern, modular, and quickly 

implementable architecture for companies of any 

size. 
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Based on the above, the research objective of this 

article is defined as the development of a 

methodology to address the Multiple Traveling 

Salesman Problem (MTSP) that minimizes cost-

time in daily logistics planning using two distance 

matrices: one calculated using the Haversine 

formula for spherical distances and another 

incorporating Google Maps information to account 

for traffic variables and travel time on an efficient 

implementation platform. 

 

2. METHODOLOGY 

 

The conventional definition of Traveling Salesman 

Problems (TSP) can be described using an 

undirected complete graph. In this representation, 

the set of customers is denoted as  0,..,V n=

where 0 designates the central distribution hub or 

logistics center. The collection of edges that form 

the underlying structure of the graph is denoted a

{( , ) , , }A i j i j i j V=    . Being a 

combinatorial optimization problem, it can be 

formulated as a mixed integer linear programming 

problem. For this, it is defined as follows: 

 

Sets:  

 

I  
Set of logistics centers 

or depots 

J  Customers 

V  Set I J  

G  Set of active agents 

 

Decision variables: 

ijx  
Represents the active 

edges in the graph 
(binary). 

iy  
Represents whether 

an agent is active 
(binary). 

ijf  
A customer j served 

from the depot i I . 

(integer) 

 

Parameters: 

ijd  The distance/cost 
between customers i-j 

(real) 

0i  The cost of using the 
workforce group i. 

(Oi=1) (real) 

m  Number of agents 
(integer) 

 

 

The model is defined as: 

 

,

min ij ij i i

i j J j V
i j

d x o y
 



+   (1) 

Subject  to:  

,

1ij

i V j J
i J

x
 


=  (2) 

1 ,ij jix x i j V+     (3) 

,

( )ij

i V j J
i J

x card V
 


  (4) 

,

1ij

i I j J
i J

f
 


  (5) 

,ij ijf x i I j J=     (6) 

0 j

j J

x m


  (7) 

1i

i G

y


  (8) 

Equation (1) represents the cost function, which is 

simplified by using distances as the dependent 

variable of the function ( )ij ijc f d= . In addition, 

the costs of using a specific workforce group are 

included. Constraints (2) and (3) ensure that each 

node in the graph, except the depot, has two edges 
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connecting it to other nodes. This guarantees that 

each node is visited exactly once by each route. 

Constraint (4) ensures that the number of edges in 

the graph equals the number of nodes, as a function 

of the cardinality of the set V. Constraints (5) and (6) 

ensure that each customer is served by a specific 

depot. This is necessary to meet the use case 

requirements, which specify that each customer 

must be served by a single agent. Constraint (7) 

indicates that the number of routes must equal the 

number of available workforce groups. This is 

necessary to ensure that there are enough resources 

to serve all customers. Constraint (8) ensures that at 

least one workforce group is available. This is 

necessary to ensure that the problem has at least one 

feasible solution. 

 

To obtain solutions to the proposed model, the Chu-

Beasley Genetic Algorithm (CBGA) is 

implemented. The main characteristics of the 

CBGA are as follows: (i) Initial Population: The 

initial population is generated by creating a random 

permutation of the customers. 

(ii) Selection: Parents are selected from a subset of 

the population through random selection. Only the 

two fittest individuals are chosen for crossover. 

(iii) Crossover: Crossover is performed using the 

Partially Matched Crossover (PMX) operator [15]. 

This operator ensures that the resulting offspring 

remain feasible within the defined constraints. 

(iv) Mutation: Mutation is carried out by reversing a 

random section of an individual's route. 

(v) Improvement: After mutation, the Or-opt 

operator is used to perform local improvements on 

the individuals [16]. 

 

3. RESULTS 

 

For this implementation, random locations were 

used to simulate assets or customers of an electrical 

distribution company. The dataset consists of 

instances with 50, 100, and 150 customers, 

distributed in both urban and rural areas. 

Additionally, specific operational conditions were 

considered, such as the existence of a depot or 

central office in the most critical urban areas. In this 

scenario, there are four central offices, each 

associated with a constant number of workforce 

groups. 

 
Table 1:  Implemented Instances 

 

Instance Number of Working Groups 

150 20 

100 7 
50 5 

Under these conditions, the process of assigning 

locations to individual headquarters, along with a 

designated number of working groups, involves a 

two-step clustering procedure: (1) Initial Clustering: 

A K-means algorithm is executed with the number 

of clusters configured to match the number of 

working groups. This operational constraint ensures 

the utilization of all available working groups. (2) 

Headquarters Assignment: Subsequently, a 

headquarters is assigned to each group using the K-

means algorithm. This step involves using the 

centroids of the initial clusters in conjunction with 

the locations of the headquarters. These experiments 

were implemented in Python 3.9 on a laptop with an 

8th generation Intel i5 vPro processor at 1.896 GHz 

and 4 cores, running Windows 10. The CBGA 

algorithm was implemented using the NumPy 

library. 

 

Tables 2, 3, and 4 show the results obtained for the 

instances used in this work, as presented in Table 1. 

The results for both the Haversine distances and the 

Google Maps API distances reference the results 

using the nearest neighbor or k-NN algorithm, 

which simulates the most efficient empirical 

planning. This means that for a company whose 

planning is based on expert knowledge without any 

clear scheduling rules or strategies, the benefits 

would be greater. For the Haversine distances, the 

travel time matrix was calculated by setting a 

constant speed of 35 km/h. This approach is not very 

precise but serves as a useful reference in this 

experiment for making comparisons with the times 

between locations affected by average traffic. 

 

From the results tables, the following is obtained: 

(1) Incumbent Distance: This is the distance value 

in kilometers for all routes. These distances are 

always shorter for the Haversine calculations 

compared to Google’s, as the former are linear, and 

the latter are by road. (2) Savings: This corresponds 

to the comparison between the incumbent calculated 

with the Google distance matrix and the use of the 

K-NN algorithm. (3) Average Cluster Distance: 

This is the Haversine distance between the cluster 

centroid and the depot or logistics center. (4) 

Incumbent Time: This corresponds to the time for 

all routes. For Haversine, it is calculated by setting 

a constant speed of 35 km/h. For Google, it is based 

on information from the API. (5) Time Savings: 

This is calculated with the Google time matrix using 

the results obtained by the K-NN algorithm as a 

reference. (6) O.F. Time: This column represents the 

results when the objective function uses the Google 

time matrix. That is, the travel time is minimized, 

not the distance. 
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Table 2:  Results for the instance of 150 locations and 20 

available working groups. 

 

Type of Distance Haversine Google O.F Time 

Incumbent 

Distance   
1257.32 km 

2771.00 
km 

2811.00 km 

Savings   
41.32 km 

122.00 

km 
82.00 km 

Savings (%)   3,18% 4,22% 2,83% 

Average Cluster 

Distance   
22.60 km 22.60 km 22.60 km 

Incumbent Time   
83.83 Hours 

95.30 
Hours 

94.33 
Hours 

Time Savings   
2.76 Hours 

3.35 

Hours 
4.36 Hours 

Execution Time 
74,7 seg 

404,01 

seg 
541,52 seg 

 

Table 3: Results for the instance of 100 locations and 7 
available working groups. 

 

Type of 

Distance 
Haversine Google 

O.F 

Time 

Incumbent 

Distance   689.63 km 1570.91 km 

1583.91 

km 

Savings   

63.90 km 178.60 km 
165.60 

km 

Savings (%)   
8,48% 10,21% 9,47% 

Average 

Cluster 

Distance   17.31 km 17.31 km 17.31 km 

Incumbent 

Time   45.96 Hours 
58.66 
Hours 

58.22 
Hours 

Time 

Savings   4.25 Hours 6.71 Hours 

7.15 

Hours 
Execution 

Time 42,3 seg 285,44 seg 

310,73 

seg 

 

Table 4:  Results for the instance of 50 locations and 5 
available working groups. 

 

Type of Distance Haversine Google O.F Time 

Incumbent 

Distance   558.24 km 

1191.15 

km 1219.33 km 
Savings   

21.96 km 36.34 km 8.16 km 
Savings (%)   

3,79% 2,96% 0,66% 
Average Cluster 

Distance   17.73 km 17.73 km 17.73 km 

Incumbent Time   

37.22 Hours 

46.00 

Hours 

45.27 

Hours 

Time Savings   

1.47 Hours 

2.09 

Hours 2.83 Hours 
Execution Time 

21,99 seg 97,88 seg 91,99 seg 

 

Based on these results, using Google API 

information provides a competitive advantage for 

obtaining optimal route planning close to real 

logistical scenarios. Time minimization is achieved 

using the Google Maps API time matrix instead of 

the distance matrix, where this approach is the most 

suitable for obtaining routes. Execution using the 

Haversine distance matrix is generally faster 

because it is performed directly by the algorithm, 

unlike the Google Maps API, which depends on the 

response received via the internet using the HTTP 

protocol. Fig. 1 shows the visual solution for the 

results of the 150-20 instance using Google 

distances, minimizing distance, and displaying the 4 

headquarters or depots. Fig. 2 shows a preliminary 

route in Google Maps for route 6. 

 

Fig. 1. Results for the instance of 150 locations with 20 working 

groups. 
 

 
Fig. 2. Route 6 of the 150-20 instance solution as a route sketch 

in Google Maps. 

 

For the implementation, the software architecture 

shown in Fig. 3 was used. It features a modular 

construction with a front-end for the interface or 

interaction and a back-end that processes the 

information. The computational load is handled by 

a RESTful API hosted on Microsoft Azure cloud 

services, allowing it to be easily implemented on 

any type of device, whether mobile or stationary, 

without requiring high-performance hardware. 

 
Fig. 3. Implementation Architecture 
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4. CONCLUSIONS 

 

This work addresses the Traveling Salesman 

Problem (TSP), which is important in the logistics 

industry and even in utility companies. A 

methodology is presented that uses two distance 

matrices: one based on the Haversine formula for 

spherical distances and another that leverages 

Google Maps information to incorporate traffic and 

travel time variables. This methodology aims to 

validate the benefits of route optimization affected 

by traffic. 

 

A genetic algorithm known as Chu-Beasley with the 

Or-Opt operator is used to obtain high-quality 

solutions in reasonable times. Test instances with 

real but random locations were used to simulate real 

logistical scenarios. 

 

The results obtained in the experiments were 

satisfactory compared to the nearest neighbor 

algorithm, which simulates empirical planning with 

acceptable performance. The use of Google Maps 

information to obtain real distances and travel times 

on roads between clients, considering traffic, was 

highlighted as a competitive advantage for 

achieving optimal route planning in realistic 

logistical scenarios. Additionally, a modular 

implementation architecture is proposed that allows 

for rapid and versatile deployments. 

 

Future work aims to develop a bi-objective 

methodology that, in addition to cost, minimizes 

greenhouse gas emissions. An additional solution 

algorithm incorporating local search mechanisms is 

also planned to enhance performance in terms of 

solution quality and time. 
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